IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v124y2020i3d10.1007_s11192-020-03542-1.html
   My bibliography  Save this article

A document-structure-based complex network model for extracting text keywords

Author

Listed:
  • YiJun Liu

    (Beihang University)

  • Li Zhang

    (Beihang University)

  • Xiaoli Lian

    (Beihang University)

Abstract

Keywords serving a dense summary of documents, are widely used in search engine and library to do information retrieval, content classification, speech recognition and automated text summarization. However, massive documents are lack of keywords, and the rapid generation of the large amount of content every day makes the human annotation really time-consuming. Lots of researches show that network-based approaches have remarkable performance for extracting text keywords. Traditionally, words are connected based upon their occurrence in documents. One recent work shows the significant influence of sentences on keywords extraction beyond the traditional methods only considering words. While in addition to words and sentences, chapters are the essential parts that are organized as the higher level semantic logic of the documents. Inspired by this idea, we therefore assume that chapters should contribute to the keyword extraction too. We further add the chapter factor to build a three-layer network model and propose a Word-Sentence-Chapter network-based approach for keywords extraction. Two experiments with Chinese and English documents respectively indicate that our approach outperforms the state of arts.

Suggested Citation

  • YiJun Liu & Li Zhang & Xiaoli Lian, 2020. "A document-structure-based complex network model for extracting text keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1765-1791, September.
  • Handle: RePEc:spr:scient:v:124:y:2020:i:3:d:10.1007_s11192-020-03542-1
    DOI: 10.1007/s11192-020-03542-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03542-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03542-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu Yang & Keping Li & Hangfei Huang, 2018. "A new network model for extracting text keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 339-361, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xicheng Yin & Hongwei Wang & Pei Yin & Hengmin Zhu & Zhenyu Zhang, 2020. "A co-occurrence based approach of automatic keyword expansion using mass diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1885-1905, September.
    2. Yang, Jinqing & Bu, Yi & Lu, Wei & Huang, Yong & Hu, Jiming & Huang, Shengzhi & Zhang, Li, 2022. "Identifying keyword sleeping beauties: A perspective on the knowledge diffusion process," Journal of Informetrics, Elsevier, vol. 16(1).
    3. Liu Yang & Keping Li & Dan Zhao & Shuang Gu & Dongyang Yan, 2019. "A Network Method for Identifying the Root Cause of High-Speed Rail Faults Based on Text Data," Energies, MDPI, vol. 12(10), pages 1-17, May.
    4. Chengzhi Zhang & Lei Zhao & Mengyuan Zhao & Yingyi Zhang, 2022. "Enhancing keyphrase extraction from academic articles with their reference information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 703-731, February.
    5. Tingting Zhang & Baozhen Lee & Qinghua Zhu & Xi Han & Ke Chen, 2023. "Document keyword extraction based on semantic hierarchical graph model," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2623-2647, May.
    6. Samuel Zanferdini Oliva & Livia Oliveira-Ciabati & Denise Gazotto Dezembro & Mário Sérgio Adolfi Júnior & Maísa Carvalho Silva & Hugo Cesar Pessotti & Juliana Tarossi Pollettini, 2021. "Text structuring methods based on complex network: a systematic review," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1471-1493, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:124:y:2020:i:3:d:10.1007_s11192-020-03542-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.