IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v120y2019i2d10.1007_s11192-019-03129-5.html
   My bibliography  Save this article

Comparative analysis of correlations of research and development indicators for rare diseases among Japan, the US, and Europe

Author

Listed:
  • Hirokuni Mizoguchi

    (The University of Tokyo)

  • Shingo Kano

    (The University of Tokyo)

Abstract

There are many rare diseases and biomedical research efforts for treatment of each disease have been ongoing. However, few reports are available to analyze overall trends for how research and development have been performed for rare diseases generally. In this research, the correlations between research and development indicators of rare diseases were examined with international comparisons among Japan, the US, and Europe. The correlation between the number of clinical studies and orphan drug designations was lower in Japan than that in the US and Europe, while the correlation between the number of orphan drug designations and orphan drug approvals was higher in Japan than in the US and Europe. This analysis clarified differences in the orphan drug designation system, operational characteristics, and beneficial points in the regions. Based on the findings of the analysis of the research/regulatory system, earlier time of orphan drug designation in Japan was proposed as a policy implication.

Suggested Citation

  • Hirokuni Mizoguchi & Shingo Kano, 2019. "Comparative analysis of correlations of research and development indicators for rare diseases among Japan, the US, and Europe," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 361-374, August.
  • Handle: RePEc:spr:scient:v:120:y:2019:i:2:d:10.1007_s11192-019-03129-5
    DOI: 10.1007/s11192-019-03129-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03129-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03129-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bryn Lander, 2013. "Sectoral collaboration in biomedical research and development," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 343-357, January.
    2. McMillan, G. Steven & Narin, Francis & Deeds, David L., 2000. "An analysis of the critical role of public science in innovation: the case of biotechnology," Research Policy, Elsevier, vol. 29(1), pages 1-8, January.
    3. Desser, Arna S., 2013. "Prioritizing treatment of rare diseases: A survey of preferences of Norwegian doctors," Social Science & Medicine, Elsevier, vol. 94(C), pages 56-62.
    4. Carlos B. Amat & François Perruchas, 2016. "Evolving cohesion metrics of a research network on rare diseases: a longitudinal study over 14 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 41-56, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    2. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    3. Vanhaverbeke, Wim & Li, Ying & Van de Vrande, Vareska, 2009. "The dual role of external corporate venturing in technological exploration," MPRA Paper 26488, University Library of Munich, Germany, revised 2010.
    4. David Grosse Kathoefer & Jens Leker, 2012. "Knowledge transfer in academia: an exploratory study on the Not-Invented-Here Syndrome," The Journal of Technology Transfer, Springer, vol. 37(5), pages 658-675, October.
    5. Swan, Jacky & Goussevskaia, Anna & Newell, Sue & Robertson, Maxine & Bresnen, Mike & Obembe, Ademola, 2007. "Modes of organizing biomedical innovation in the UK and US and the role of integrative and relational capabilities," Research Policy, Elsevier, vol. 36(4), pages 529-547, May.
    6. Armando Albert & Begoña Granadino & Luis M. Plaza, 2007. "Scientific and technological performance evaluation of the Spanish Council for Scientific Research (CSIC) in the field of Biotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 41-51, January.
    7. Boyack, Kevin W. & Patek, Michael & Ungar, Lyle H. & Yoon, Patrick & Klavans, Richard, 2014. "Classification of individual articles from all of science by research level," Journal of Informetrics, Elsevier, vol. 8(1), pages 1-12.
    8. Parayil, Govindan, 2003. "Mapping technological trajectories of the Green Revolution and the Gene Revolution from modernization to globalization," Research Policy, Elsevier, vol. 32(6), pages 971-990, June.
    9. Huang, Mu-Hsuan & Dong, Huei-Ru & Chen, Dar-Zen, 2012. "Globalization of collaborative creativity through cross-border patent activities," Journal of Informetrics, Elsevier, vol. 6(2), pages 226-236.
    10. Kleinhout-Vliek, Tineke & de Bont, Antoinette & Boer, Bert, 2017. "The bare necessities? A realist review of necessity argumentations used in health care coverage decisions," Health Policy, Elsevier, vol. 121(7), pages 731-744.
    11. Manuel Acosta & Joaqu�n M. Azagra-Caro & Daniel Coronado, 2016. "Access to Universities' Public Knowledge: Who is More Regionalist?," Regional Studies, Taylor & Francis Journals, vol. 50(3), pages 446-459, March.
    12. Matt Marx & Aaron Fuegi, 2020. "Reliance on science: Worldwide front‐page patent citations to scientific articles," Strategic Management Journal, Wiley Blackwell, vol. 41(9), pages 1572-1594, September.
    13. Bekkers, Rudi & Bodas Freitas, Isabel Maria, 2008. "Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter?," Research Policy, Elsevier, vol. 37(10), pages 1837-1853, December.
    14. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    15. Metcalfe, J.S. & James, Andrew & Mina, Andrea, 2005. "Emergent innovation systems and the delivery of clinical services: The case of intra-ocular lenses," Research Policy, Elsevier, vol. 34(9), pages 1283-1304, November.
    16. Gianluca Fabiano & Andrea Marcellusi & Giampiero Favato, 2020. "Public–private contribution to biopharmaceutical discoveries: a bibliometric analysis of biomedical research in UK," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 153-168, July.
    17. Qingjun Zhao & Jiancheng Guan, 2012. "Modeling the dynamic relation between science and technology in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 561-579, February.
    18. Albert Banal-Estañol & Inés Macho-Stadler, 2007. "Financial Incentives in Academia: Research versus Development," Working Papers 295, Barcelona School of Economics.
    19. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    20. Heide Fier & Andreas Pyka, 2014. "Against the one-way-street: analyzing knowledge transfer from industry to science," The Journal of Technology Transfer, Springer, vol. 39(2), pages 219-246, April.

    More about this item

    Keywords

    Rare disease; Orphan drug; Research and development; Regulatory science; Correlation; Regional comparison;
    All these keywords.

    JEL classification:

    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:120:y:2019:i:2:d:10.1007_s11192-019-03129-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.