IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v113y2017i3d10.1007_s11192-017-2548-y.html
   My bibliography  Save this article

RTRS: a recommender system for academic researchers

Author

Listed:
  • Mohammad Mahbub Alam

    (University of Malaya)

  • Maizatul Akmar Ismail

    (University of Malaya)

Abstract

The ever-evolving nature of research works creates the cacophony of new topics incessantly resulting in an unstable state in every field of research. Researchers are disseminating their works producing a huge volume of articles. In fact, the spectacular growth in scholarly literature is widening the choice sets overwhelmingly for researchers. Consequently, they face difficulties in identifying a suitable topic of current importance from a plethora of research topics. This remains an ill-defined problem for researchers due to the overload of choices. The problem is even more severe for new researchers due to the lack of experience. Hence, there is a definite need for a system that would help researchers make decisions on appropriate topics. Recommender systems are good options for performing this very task. They have been proven to be useful for researchers to keep pace with research dynamics and at the same time to overcome the information overload problem by retrieving useful information from the large information space of scholarly literature. In this article, we present RTRS, a knowledge-based Research Topics Recommender System to assist both novice and experienced researchers in selecting research topics in their chosen field. The core of this system hinges upon bibliometric information of the literature. The system identifies active research topics in a particular area and recommends top N topics to the target users. The results obtained have proven useful to academic researchers, particularly novices, in making an early decision on research topics.

Suggested Citation

  • Mohammad Mahbub Alam & Maizatul Akmar Ismail, 2017. "RTRS: a recommender system for academic researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1325-1348, December.
  • Handle: RePEc:spr:scient:v:113:y:2017:i:3:d:10.1007_s11192-017-2548-y
    DOI: 10.1007/s11192-017-2548-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2548-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2548-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    2. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    3. Chaomei Chen & Fidelia Ibekwe-SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meen Chul Kim & Chaomei Chen, 2015. "A scientometric review of emerging trends and new developments in recommendation systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 239-263, July.
    2. Wang Guizhou & Zhang Si & Yu Tao & Ning Yu, 2021. "A Systematic Overview of Blockchain Research," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 205-238, June.
    3. Hyejin Park & Han Woo Park, 2018. "Two-side face of knowledge building using scientometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2815-2836, November.
    4. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    5. Jiaxing Jiang & Lin Fan, 2022. "Visualizing the Knowledge Domain of Language Experience: A Bibliometric Analysis," SAGE Open, , vol. 12(1), pages 21582440211, January.
    6. Hu, Wen & Li, Chun-hua & Ye, Chun & Wang, Ji & Wei, Wei-wei & Deng, Yong, 2019. "Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    7. Zhibin Peng & Omid Khatin-Zadeh, 2023. "Research on metaphor processing during the past five decades: a bibliometric analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    8. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    9. Rui Qiu & Shuhua Hou & Xin Chen & Zhiyi Meng, 2021. "Green aviation industry sustainable development towards an integrated support system," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2441-2452, July.
    10. Qi-Qi CHEN & Jun-Biao ZHANG & Yu HUO, 2016. "A study on research hot-spots and frontiers of agricultural science and technology innovation - visualization analysis based on the Citespace III," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(9), pages 429-445.
    11. Cody Dunne & Ben Shneiderman & Robert Gove & Judith Klavans & Bonnie Dorr, 2012. "Rapid understanding of scientific paper collections: Integrating statistics, text analytics, and visualization," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2351-2369, December.
    12. Andrej Kastrin & Dimitar Hristovski, 2021. "Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1415-1451, February.
    13. Xue Xiao & Martin Skitmore & Heng Li & Bo Xia, 2019. "Mapping Knowledge in the Economic Areas of Green Building Using Scientometric Analysis," Energies, MDPI, vol. 12(15), pages 1-22, August.
    14. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    15. Ma, Chao-Qun & Lei, Yu-Tian & Ren, Yi-Shuai & Chen, Xun-Qi & Wang, Yi-Ran & Narayan, Seema, 2024. "Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions," Telecommunications Policy, Elsevier, vol. 48(2).
    16. Mehdi Amirkhani & Igor Martek & Mark B. Luther, 2021. "Mapping Research Trends in Residential Construction Retrofitting: A Scientometric Literature Review," Energies, MDPI, vol. 14(19), pages 1-18, September.
    17. Ben Zhang & Chenxu Ming, 2023. "Digital Transformation and Open Innovation Planning of Response to COVID-19 Outbreak: A Systematic Literature Review and Future Research Agenda," IJERPH, MDPI, vol. 20(3), pages 1-26, February.
    18. Zongmin Li & Shuyan Xu & Liming Yao, 2018. "A Systematic Literature Mining of Sponge City: Trends, Foci and Challenges Standing Ahead," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    19. Boyack, Kevin W. & Klavans, Richard, 2014. "Including cited non-source items in a large-scale map of science: What difference does it make?," Journal of Informetrics, Elsevier, vol. 8(3), pages 569-580.
    20. Yuqing Fang, 2015. "Visualizing the structure and the evolving of digital medicine: a scientometrics review," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 5-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:113:y:2017:i:3:d:10.1007_s11192-017-2548-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.