IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v111y2017i2d10.1007_s11192-017-2301-6.html
   My bibliography  Save this article

Using hybrid methods and ‘core documents’ for the representation of clusters and topics: the astronomy dataset

Author

Listed:
  • Wolfgang Glänzel

    (KU Leuven
    Library of the Hungarian Academy of Sciences)

  • Bart Thijs

    (KU Leuven)

Abstract

Based on a dataset on Astronomy and Astrophysics, hybrid cluster analyses have been conducted. In order to obtain an optimum solution and to analyse possible issues resulting from the bibliometric methodologies used, we have systematically studied three models and, within these models, two scenarios each. The hybrid clustering was based on a combination of bibliographic coupling and textual similarities using the Louvain method at two resolution levels. The procedure resulted in three clearly hierarchical structures with six and thirteen, seven and thirteen and finally five and eleven clusters, respectively. These structures are analysed with the help of a concordance table. The statistics reflect a high quality of classification. The results of these three models are presented, discussed and compared with each other. For labelling and interpreting clusters, core documents representing the obtained clusters are used. Furthermore, these core documents help depict the internal structure of the complete network and the clusters. This work has been done as part of the international project ‘Measuring the Diversity of Research’ and in the framework a special workshop on the comparative analysis of algorithms for the identification of topics in science organised in Berlin in August 2014.

Suggested Citation

  • Wolfgang Glänzel & Bart Thijs, 2017. "Using hybrid methods and ‘core documents’ for the representation of clusters and topics: the astronomy dataset," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1071-1087, May.
  • Handle: RePEc:spr:scient:v:111:y:2017:i:2:d:10.1007_s11192-017-2301-6
    DOI: 10.1007/s11192-017-2301-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2301-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2301-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    2. Bart Thijs & Edgar Schiebel & Wolfgang Glänzel, 2013. "Do second-order similarities provide added-value in a hybrid approach?," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 667-677, September.
    3. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    4. Ahlgren, Per & Colliander, Cristian, 2009. "Document–document similarity approaches and science mapping: Experimental comparison of five approaches," Journal of Informetrics, Elsevier, vol. 3(1), pages 49-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    2. Rob Koopman & Shenghui Wang & Andrea Scharnhorst, 2017. "Contextualization of topics: browsing through the universe of bibliographic information," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1119-1139, May.
    3. Theresa Velden & Kevin W. Boyack & Jochen Gläser & Rob Koopman & Andrea Scharnhorst & Shenghui Wang, 2017. "Comparison of topic extraction approaches and their results," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1169-1221, May.
    4. Mason Youngblood & David Lahti, 2018. "A bibliometric analysis of the interdisciplinary field of cultural evolution," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    5. Wolfgang Glänzel & Sarah Heeffer & Bart Thijs, 2017. "Lexical analysis of scientific publications for nano-level scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1897-1906, June.
    6. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.
    7. Christian Weismayer & Ilona Pezenka, 2017. "Identifying emerging research fields: a longitudinal latent semantic keyword analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1757-1785, December.
    8. Matthias Held & Grit Laudel & Jochen Gläser, 2021. "Challenges to the validity of topic reconstruction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4511-4536, May.
    9. Bart Thijs & Wolfgang Glänzel, 2018. "The contribution of the lexical component in hybrid clustering, the case of four decades of “Scientometrics”," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 21-33, April.
    10. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "Hybrid self-optimized clustering model based on citation links and textual features to detect research topics," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-21, October.
    11. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    12. Shenghui Wang & Rob Koopman, 2017. "Clustering articles based on semantic similarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1017-1031, May.
    13. Guadalupe Palacios-Núñez & Gabriel Vélez-Cuartas & Juan D. Botero, 2018. "Developmental tendencies in the academic field of intellectual property through the identification of invisible colleges," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(3), pages 1561-1574, June.
    14. Shuo Xu & Junwan Liu & Dongsheng Zhai & Xin An & Zheng Wang & Hongshen Pang, 2018. "Overlapping thematic structures extraction with mixed-membership stochastic blockmodel," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 61-84, October.
    15. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Meyer-Brötz & Edgar Schiebel & Leo Brecht, 2017. "Experimental evaluation of parameter settings in calculation of hybrid similarities: effects of first- and second-order similarity, edge cutting, and weighting factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1307-1325, June.
    2. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    3. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    4. Yun, Jinhyuk & Ahn, Sejung & Lee, June Young, 2020. "Return to basics: Clustering of scientific literature using structural information," Journal of Informetrics, Elsevier, vol. 14(4).
    5. Cristian Colliander & Per Ahlgren, 2012. "Experimental comparison of first and second-order similarities in a scientometric context," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 675-685, February.
    6. Nauman Majeed & Sulaiman Ainin, 2021. "Visualizing the evolution and landscape of socio-economic impact research," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 637-659, April.
    7. Yun, Jinhyuk, 2022. "Generalization of bibliographic coupling and co-citation using the node split network," Journal of Informetrics, Elsevier, vol. 16(2).
    8. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    9. Gómez-Núñez, Antonio J. & Batagelj, Vladimir & Vargas-Quesada, Benjamín & Moya-Anegón, Félix & Chinchilla-Rodríguez, Zaida, 2014. "Optimizing SCImago Journal & Country Rank classification by community detection," Journal of Informetrics, Elsevier, vol. 8(2), pages 369-383.
    10. Bart Thijs & Edgar Schiebel & Wolfgang Glänzel, 2013. "Do second-order similarities provide added-value in a hybrid approach?," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 667-677, September.
    11. Emili Vizuete-Luciano & Oktay Güzel & José M. Merigó, 2023. "Bibliometric research of the Pay-What-You-Want Topic," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(5), pages 413-426, October.
    12. Zhang, Yi & Shang, Lining & Huang, Lu & Porter, Alan L. & Zhang, Guangquan & Lu, Jie & Zhu, Donghua, 2016. "A hybrid similarity measure method for patent portfolio analysis," Journal of Informetrics, Elsevier, vol. 10(4), pages 1108-1130.
    13. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Romero-Castro, Noelia María & Pérez-Pico, Ada María, 2020. "Innovation, entrepreneurship and knowledge in the business scientific field: Mapping the research front," Journal of Business Research, Elsevier, vol. 115(C), pages 475-485.
    14. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    15. Caloffi, Annalisa & Colovic, Ana & Rizzoli, Valentina & Rossi, Federica, 2023. "Innovation intermediaries' types and functions: A computational analysis of the literature," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    16. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    17. Tuba Bircan & Almila Alkim Akdag Salah, 2022. "A Bibliometric Analysis of the Use of Artificial Intelligence Technologies for Social Sciences," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    18. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib & Ainin Sulaiman, 2023. "Light-emitting diode (LED) research: A bibliometric analysis during 2003–2018," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 173-191, February.
    19. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    20. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:111:y:2017:i:2:d:10.1007_s11192-017-2301-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.