IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v109y2016i1d10.1007_s11192-016-1942-1.html
   My bibliography  Save this article

Bonded-communities in HantaVirus research: a research collaboration network (RCN) analysis

Author

Listed:
  • Sameer Kumar

    (University of Malaya)

  • Bernd Markscheffel

    (Technische Universität Ilmenau)

Abstract

Hantavirus, one of the deadliest viruses known to humans, hospitalizes tens of thousands of people each year in Asia, Europe and the Americas. Transmitted by infected rodents and their excreta, Hantavirus are identified as etiologic agents of two main types of diseases—Hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome, the latter having a fatality rate of above 40 %. Although considerable research for over two decades has been going on in this area, bibliometric studies to gauge the state of research of this field have been rare. An analysis of 2631 articles, extracted from WoS databases on Hantavirus between 1980 and 2014, indicated a progressive increase (R 2 = 0.93) in the number of papers over the years, with the majority of papers being published in the USA and Europe. About 95 % papers were co-authored and the most common arrangement was 4–6 authors per paper. Co-authorship has seen a steady increase (R 2 = 0.57) over the years. We apply research collaboration network analysis to investigate the best-connected authors in the field. The author-based networks have 49 components (connected clump of nodes) with 7373 vertices (authors) and 49,747 edges (co-author associations) between them. The giant component (the largest component) is healthy, occupying 84.19 % or 6208 vertices with 47,117 edges between them. By using edge-weight threshold, we drill down into the network to reveal bonded communities. We find three communities’ hotspots—one, led by researchers at University of Helsinki, Finland; a second, led by the Centers of Disease Control and Prevention, USA; and a third, led by Hokkaido University, Japan. Significant correlation was found between author’s structural position in the network and research performance, thus further supporting a well-studied phenomenon that centrality effects research productivity. However, it was the PageRank centrality that out-performed degree and betweenness centrality in its strength of correlation with research performance.

Suggested Citation

  • Sameer Kumar & Bernd Markscheffel, 2016. "Bonded-communities in HantaVirus research: a research collaboration network (RCN) analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 533-550, October.
  • Handle: RePEc:spr:scient:v:109:y:2016:i:1:d:10.1007_s11192-016-1942-1
    DOI: 10.1007/s11192-016-1942-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-016-1942-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-016-1942-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahadat Uddin & Liaquat Hossain & Alireza Abbasi & Kim Rasmussen, 2012. "Trend and efficiency analysis of co-authorship network," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 687-699, February.
    2. Abbasi, Alireza & Altmann, Jörn & Hossain, Liaquat, 2011. "Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures," Journal of Informetrics, Elsevier, vol. 5(4), pages 594-607.
    3. Seyedamir Tavakoli Taba & Liaquat Hossain & Simon Reay Atkinson & Sarah Lewis, 2015. "Towards understanding longitudinal collaboration networks: a case of mammography performance research," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 531-544, May.
    4. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    5. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    6. Donald Deb. Beaver, 2001. "Reflections on Scientific Collaboration (and its study): Past, Present, and Future," Scientometrics, Springer;Akadémiai Kiadó, vol. 52(3), pages 365-377, November.
    7. Sameer Kumar & Jariah Mohd. Jan, 2014. "Research collaboration networks of two OIC nations: comparative study between Turkey and Malaysia in the field of ‘Energy Fuels’, 2009–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 387-414, January.
    8. Choong Kwai Fatt & Ephrance Abu Ujum & Kuru Ratnavelu, 2010. "The structure of collaboration in the Journal of Finance," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 849-860, December.
    9. Heinze, Thomas & Kuhlmann, Stefan, 2008. "Across institutional boundaries?: Research collaboration in German public sector nanoscience," Research Policy, Elsevier, vol. 37(5), pages 888-899, June.
    10. Katz, J. Sylvan & Martin, Ben R., 1997. "What is research collaboration?," Research Policy, Elsevier, vol. 26(1), pages 1-18, March.
    11. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    12. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gregorio González-Alcaide & Héctor Pinargote & José M. Ramos, 2020. "From cut-points to key players in co-authorship networks: a case study in ventilator-associated pneumonia research," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 707-733, May.
    2. Gregorio González-Alcaide, 2021. "Bibliometric studies outside the information science and library science field: uncontainable or uncontrollable?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6837-6870, August.
    3. Mengyang Wang & Lihe Chai, 2018. "Three new bibliometric indicators/approaches derived from keyword analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 721-750, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sameer Kumar & Jariah Mohd. Jan, 2013. "Mapping research collaborations in the business and management field in Malaysia, 1980–2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 491-517, December.
    2. Sameer Kumar & Jariah Mohd. Jan, 2014. "Research collaboration networks of two OIC nations: comparative study between Turkey and Malaysia in the field of ‘Energy Fuels’, 2009–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 387-414, January.
    3. Sameer Kumar & Kuru Ratnavelu, 2016. "Perceptions of Scholars in the Field of Economics on Co-Authorship Associations: Evidence from an International Survey," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-18, June.
    4. Roberto Lalli & Riaz Howey & Dirk Wintergrün, 2020. "The dynamics of collaboration networks and the history of general relativity, 1925–1970," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1129-1170, February.
    5. Cimenler, Oguz & Reeves, Kingsley A. & Skvoretz, John, 2014. "A regression analysis of researchers’ social network metrics on their citation performance in a college of engineering," Journal of Informetrics, Elsevier, vol. 8(3), pages 667-682.
    6. Letina, Srebrenka, 2016. "Network and actor attribute effects on the performance of researchers in two fields of social science in a small peripheral community," Journal of Informetrics, Elsevier, vol. 10(2), pages 571-595.
    7. Klenk, Nicole L. & Hickey, Gordon M., 2013. "How can formal research networks produce more socially robust forest science?," Forest Policy and Economics, Elsevier, vol. 37(C), pages 44-56.
    8. Cimenler, Oguz & Reeves, Kingsley A. & Skvoretz, John, 2015. "An evaluation of collaborative research in a college of engineering," Journal of Informetrics, Elsevier, vol. 9(3), pages 577-590.
    9. Šubelj, Lovro & Fiala, Dalibor & Ciglarič, Tadej & Kronegger, Luka, 2019. "Convexity in scientific collaboration networks," Journal of Informetrics, Elsevier, vol. 13(1), pages 10-31.
    10. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    11. Lemarchand, Guillermo A., 2012. "The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010)," Research Policy, Elsevier, vol. 41(2), pages 291-305.
    12. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    13. Edler, Jakob & Fier, Heide & Grimpe, Christoph, 2011. "International scientist mobility and the locus of knowledge and technology transfer," Research Policy, Elsevier, vol. 40(6), pages 791-805, July.
    14. Hui Xuan Tan & Ephrance Abu Ujum & Kwai Fatt Choong & Kuru Ratnavelu, 2015. "Impact analysis of domestic and international research collaborations: a Malaysian case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 885-904, January.
    15. Krzysztof Klincewicz, 2016. "The emergent dynamics of a technological research topic: the case of graphene," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 319-345, January.
    16. Ho Fai Chan & Ali Sina Önder & Benno Torgler, 2015. "Do Nobel laureates change their patterns of collaboration following prize reception?," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2215-2235, December.
    17. Alireza Abbasi & Liaquat Hossain & Shahadat Uddin & Kim J. R. Rasmussen, 2011. "Evolutionary dynamics of scientific collaboration networks: multi-levels and cross-time analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 687-710, November.
    18. Minsoo Choi & Heejin Lee & Hanah Zoo, 2021. "Scientific knowledge production and research collaboration between Australia and South Korea: patterns and dynamics based on co-authorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 683-706, January.
    19. Seyedamir Tavakoli Taba & Liaquat Hossain & Simon Reay Atkinson & Sarah Lewis, 2015. "Towards understanding longitudinal collaboration networks: a case of mammography performance research," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 531-544, May.
    20. Andrea Fronzetti Colladon & Ciriaco Andrea D’Angelo & Peter A. Gloor, 2020. "Predicting the future success of scientific publications through social network and semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 357-377, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:109:y:2016:i:1:d:10.1007_s11192-016-1942-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.