IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v107y2016i2d10.1007_s11192-016-1847-z.html
   My bibliography  Save this article

Stopped sum models and proposed variants for citation data

Author

Listed:
  • Wan Jing Low

    (University of Wolverhampton)

  • Paul Wilson

    (University of Wolverhampton)

  • Mike Thelwall

    (University of Wolverhampton)

Abstract

It is important to identify the most appropriate statistical model for citation data in order to maximise the potential of future analyses as well as to shed light on the processes that may drive citations. This article assesses stopped sum models and some variants and compares them with two previously used models, the discretised lognormal and negative binomial, using the Akaike Information Criterion (AIC). Based upon data from 20 Scopus categories, some of the stopped sum variant models had lower AIC values than the discretised lognormal models, which were otherwise the best (with respect to AIC). However, very large standard errors were returned for some of these variant models, indicating the imprecision of the estimates and the impracticality of the approach. Hence, although the stopped sum variant models show some promise for citation analysis, they are only recommended when they fit better than the alternatives and have manageable standard errors. Nevertheless, their good fit to citation data gives evidence that two different, but related, processes may drive citations.

Suggested Citation

  • Wan Jing Low & Paul Wilson & Mike Thelwall, 2016. "Stopped sum models and proposed variants for citation data," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 369-384, May.
  • Handle: RePEc:spr:scient:v:107:y:2016:i:2:d:10.1007_s11192-016-1847-z
    DOI: 10.1007/s11192-016-1847-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-016-1847-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-016-1847-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Bookstein, 2001. "Implications of ambiguity for scientometric measurement," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 52(1), pages 74-79.
    2. Zeileis, Achim & Kleiber, Christian & Jackman, Simon, 2008. "Regression Models for Count Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i08).
    3. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    4. Thelwall, Mike & Wilson, Paul, 2014. "Distributions for cited articles from individual subjects and years," Journal of Informetrics, Elsevier, vol. 8(4), pages 824-839.
    5. Thelwall, Mike & Wilson, Paul, 2014. "Regression for citation data: An evaluation of different methods," Journal of Informetrics, Elsevier, vol. 8(4), pages 963-971.
    6. Zhu, Rong & Joe, Harry, 2009. "Modelling heavy-tailed count data using a generalised Poisson-inverse Gaussian family," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1695-1703, August.
    7. Anthony F. J. van Raan, 2004. "Sleeping Beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(3), pages 467-472, March.
    8. Derek De Solla Price, 1976. "A general theory of bibliometric and other cumulative advantage processes," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 27(5), pages 292-306, September.
    9. Yong-Gil Lee & Jeong-Dong Lee & Yong-Il Song & Se-Jun Lee, 2007. "An in-depth empirical analysis of patent citation counts using zero-inflated count data model: The case of KIST," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 27-39, January.
    10. repec:bla:scandj:v:104:y:2002:i:4:p:531-45 is not listed on IDEAS
    11. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    12. Bornmann, Lutz & Schier, Hermann & Marx, Werner & Daniel, Hans-Dieter, 2012. "What factors determine citation counts of publications in chemistry besides their quality?," Journal of Informetrics, Elsevier, vol. 6(1), pages 11-18.
    13. Per Botolf Maurseth & Bart Verspagen, 2002. "Knowledge Spillovers in Europe: A Patent Citations Analysis," Scandinavian Journal of Economics, Wiley Blackwell, vol. 104(4), pages 531-545, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thelwall, Mike & Fairclough, Ruth, 2017. "The accuracy of confidence intervals for field normalised indicators," Journal of Informetrics, Elsevier, vol. 11(2), pages 530-540.
    2. Vîiu, Gabriel-Alexandru, 2018. "The lognormal distribution explains the remarkable pattern documented by characteristic scores and scales in scientometrics," Journal of Informetrics, Elsevier, vol. 12(2), pages 401-415.
    3. Duarte-López, Ariel & Pérez-Casany, Marta & Valero, Jordi, 2020. "The Zipf–Poisson-stopped-sum distribution with an application for modeling the degree sequence of social networks," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thelwall, Mike & Sud, Pardeep, 2016. "National, disciplinary and temporal variations in the extent to which articles with more authors have more impact: Evidence from a geometric field normalised citation indicator," Journal of Informetrics, Elsevier, vol. 10(1), pages 48-61.
    2. Thelwall, Mike, 2016. "The precision of the arithmetic mean, geometric mean and percentiles for citation data: An experimental simulation modelling approach," Journal of Informetrics, Elsevier, vol. 10(1), pages 110-123.
    3. Thelwall, Mike, 2016. "The discretised lognormal and hooked power law distributions for complete citation data: Best options for modelling and regression," Journal of Informetrics, Elsevier, vol. 10(2), pages 336-346.
    4. Ajiferuke, Isola & Famoye, Felix, 2015. "Modelling count response variables in informetric studies: Comparison among count, linear, and lognormal regression models," Journal of Informetrics, Elsevier, vol. 9(3), pages 499-513.
    5. Thelwall, Mike & Fairclough, Ruth, 2015. "The influence of time and discipline on the magnitude of correlations between citation counts and quality scores," Journal of Informetrics, Elsevier, vol. 9(3), pages 529-541.
    6. Stegehuis, Clara & Litvak, Nelly & Waltman, Ludo, 2015. "Predicting the long-term citation impact of recent publications," Journal of Informetrics, Elsevier, vol. 9(3), pages 642-657.
    7. Thelwall, Mike & Fairclough, Ruth, 2017. "The accuracy of confidence intervals for field normalised indicators," Journal of Informetrics, Elsevier, vol. 11(2), pages 530-540.
    8. Thelwall, Mike, 2016. "Are the discretised lognormal and hooked power law distributions plausible for citation data?," Journal of Informetrics, Elsevier, vol. 10(2), pages 454-470.
    9. Fairclough, Ruth & Thelwall, Mike, 2015. "More precise methods for national research citation impact comparisons," Journal of Informetrics, Elsevier, vol. 9(4), pages 895-906.
    10. Thelwall, Mike, 2016. "Citation count distributions for large monodisciplinary journals," Journal of Informetrics, Elsevier, vol. 10(3), pages 863-874.
    11. Zahedi, Zohreh & Haustein, Stefanie, 2018. "On the relationships between bibliographic characteristics of scientific documents and citation and Mendeley readership counts: A large-scale analysis of Web of Science publications," Journal of Informetrics, Elsevier, vol. 12(1), pages 191-202.
    12. Jong-Hyun Kim & Yong-Gil Lee, 2021. "Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    13. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    14. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    15. Dongqing Lyu & Kaile Gong & Xuanmin Ruan & Ying Cheng & Jiang Li, 2021. "Does research collaboration influence the “disruption” of articles? Evidence from neurosciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 287-303, January.
    16. Mike Thelwall, 2016. "Interpreting correlations between citation counts and other indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 337-347, July.
    17. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    18. Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
    19. Brito, Ricardo & Navarro, Alonso Rodríguez, 2021. "The inconsistency of h-index: A mathematical analysis," Journal of Informetrics, Elsevier, vol. 15(1).
    20. Kaile Gong & Juan Xie & Ying Cheng & Vincent Larivière & Cassidy R. Sugimoto, 2019. "The citation advantage of foreign language references for Chinese social science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1439-1460, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:107:y:2016:i:2:d:10.1007_s11192-016-1847-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.