IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v81y2019i1d10.1007_s13571-017-0134-1.html
   My bibliography  Save this article

Point and Interval Estimation of Weibull Parameters Based on Joint Progressively Censored Data

Author

Listed:
  • Shuvashree Mondal

    (Indian Institute of Technology Kanpur)

  • Debasis Kundu

    (Indian Institute of Technology Kanpur)

Abstract

The analysis of progressively censored data has received considerable attention in the last few years. In this paper, we consider the joint progressive censoring scheme for two populations. It is assumed that the lifetime distribution of the items from the two populations follows Weibull distribution with the same shape but different scale parameters. Based on the joint progressive censoring scheme, first, we consider the maximum likelihood estimators of the unknown parameters whenever they exist. We provide the Bayesian inferences of the unknown parameters under a fairly general priors on the shape and scale parameters. The Bayes estimators and the associated credible intervals cannot be obtained in closed form, and we propose to use the importance sampling technique to compute the same. Further, we consider the problem when it is known a priori that the expected lifetime of one population is smaller than the other. We provide the order-restricted classical and Bayesian inferences of the unknown parameters. Monte Carlo simulations are performed to observe the performances of the different estimators and the associated confidence and credible intervals. One real data set has been analyzed for illustrative purpose.

Suggested Citation

  • Shuvashree Mondal & Debasis Kundu, 2019. "Point and Interval Estimation of Weibull Parameters Based on Joint Progressively Censored Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-25, June.
  • Handle: RePEc:spr:sankhb:v:81:y:2019:i:1:d:10.1007_s13571-017-0134-1
    DOI: 10.1007/s13571-017-0134-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-017-0134-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-017-0134-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parsi, Safar & Bairamov, Ismihan, 2009. "Expected values of the number of failures for two populations under joint Type-II progressive censoring," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3560-3570, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ranjita Pandey & Pulkit Srivastava, 2022. "Bayesian inference for two log-logistic populations under joint progressive type II censoring schemes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2981-2991, December.
    2. Prakash Chandra & Yogesh Mani Tripathi & Liang Wang & Chandrakant Lodhi, 2023. "Estimation for Kies distribution with generalized progressive hybrid censoring under partially observed competing risks model," Journal of Risk and Reliability, , vol. 237(6), pages 1048-1072, December.
    3. Chunmei Zhang & Tao Cong & Wenhao Gui, 2023. "Order-Restricted Inference for Generalized Inverted Exponential Distribution under Balanced Joint Progressive Type-II Censored Data and Its Application on the Breaking Strength of Jute Fibers," Mathematics, MDPI, vol. 11(2), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yahia Abdel-Aty & Mohamed Kayid & Ghadah Alomani, 2023. "Generalized Bayes Estimation Based on a Joint Type-II Censored Sample from K-Exponential Populations," Mathematics, MDPI, vol. 11(9), pages 1-11, May.
    2. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:81:y:2019:i:1:d:10.1007_s13571-017-0134-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.