IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v86y2024i1d10.1007_s13171-023-00322-w.html
   My bibliography  Save this article

Exponential Bounds and Convergence Rates of Sieve Estimators for Functional Autoregressive Processes

Author

Listed:
  • Nesrine Kara Terki

    (Higher School of Management-Tlemcen)

  • Tahar Mourid

    (University of Abou Bakr Belkaid Tlemcen)

Abstract

In the following study, we deal with the exponential bounds and rates for a class of sieve estimators of Grenander for Functional Autoregressive Processes when the parameter operator belongs to the parameter space of Hilbert-Schmidt operators. Two classes of parameter operators are considered where we state clearly sieve estimators formulas and derive corresponding exponential bounds. These results are applied to establish their almost sure convergence and almost complete convergence. Then, we determine rates of convergence of sieve estimators in each class. The numerical studies illustrate the performance of the sieve predictors and give comparisons with other existing prediction methods both on simulated and real functional data sets exhibiting competitive results.

Suggested Citation

  • Nesrine Kara Terki & Tahar Mourid, 2024. "Exponential Bounds and Convergence Rates of Sieve Estimators for Functional Autoregressive Processes," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 364-391, February.
  • Handle: RePEc:spr:sankha:v:86:y:2024:i:1:d:10.1007_s13171-023-00322-w
    DOI: 10.1007/s13171-023-00322-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-023-00322-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-023-00322-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:86:y:2024:i:1:d:10.1007_s13171-023-00322-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.