IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v85y2023i2d10.1007_s13171-022-00304-4.html
   My bibliography  Save this article

On the Exponential Max-Domain of Attraction of the Standard Log-Fréchet Distribution and Subexponentiality

Author

Listed:
  • A. S. Praveena

    (University of Mysore)

  • S. Ravi

    (University of Mysore)

Abstract

In this article, we derive a simple von-Mises type sufficient condition for a distribution function to belong to the exponential max-domain of attraction of the standard log-Fréchet distribution under a nonlinear normalization called exponential normalization. A new criterion for the exponential max-domain, in terms of von-Mises type conditions and tail equivalence, is then derived. Apart from stating some interesting properties of the standard log-Fréchet distribution, some sufficient conditions are obtained for a distribution function to belong to both the exponential max-domain of attraction of the standard log-Fréchet law and the subexponential class. Several examples are discussed.

Suggested Citation

  • A. S. Praveena & S. Ravi, 2023. "On the Exponential Max-Domain of Attraction of the Standard Log-Fréchet Distribution and Subexponentiality," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1607-1622, August.
  • Handle: RePEc:spr:sankha:v:85:y:2023:i:2:d:10.1007_s13171-022-00304-4
    DOI: 10.1007/s13171-022-00304-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-022-00304-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-022-00304-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Subramanya, U. R., 1994. "On max domains of attraction of univariate p-max stable laws," Statistics & Probability Letters, Elsevier, vol. 19(4), pages 271-279, March.
    2. S. Ravi & A. S. Praveena, 2015. "On The Intersection Of Max Domains Of Attraction Of p-Max Stable Laws and the Class of Subexponential Distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(1), pages 115-124, January.
    3. Mikosch, Thomas & Resnick, Sidney, 2006. "Activity rates with very heavy tails," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 131-155, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. M. Barakat & E. M. Nigm, 2010. "On the rate of convergence to asymptotic independence between order statistics under power normalization with extension to the generalized order statistics," Indian Journal of Pure and Applied Mathematics, Springer, vol. 41(6), pages 703-714, December.
    2. Barakat, H.M. & Omar, A.R. & Khaled, O.M., 2017. "A new flexible extreme value model for modeling the extreme value data, with an application to environmental data," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 25-31.
    3. Feng, Bo & Chen, Shouquan, 2015. "On large deviations of extremes under power normalization," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 27-35.
    4. Magdziarz, Marcin, 2009. "Stochastic representation of subdiffusion processes with time-dependent drift," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3238-3252, October.
    5. Christoph, Gerd & Falk, Michael, 1996. "A note on domains of attraction of p-max stable laws," Statistics & Probability Letters, Elsevier, vol. 28(3), pages 279-284, July.
    6. Geng Yang & Tingting Li, 2016. "Expansions on extremes from logarithmic general error distribution under power normalization," Statistical Papers, Springer, vol. 57(3), pages 781-793, September.
    7. Weng, Zhichao & Liao, Xin, 2017. "Second order expansions of distributions of maxima of bivariate Gaussian triangular arrays under power normalization," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 33-43.
    8. Gerold Alsmeyer & Alexander Iksanov & Matthias Meiners, 2015. "Power and Exponential Moments of the Number of Visits and Related Quantities for Perturbed Random Walks," Journal of Theoretical Probability, Springer, vol. 28(1), pages 1-40, March.
    9. Chen, Shouquan & Wang, Chao & Zhang, Geng, 2012. "Rates of convergence of extreme for general error distribution under power normalization," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 385-395.
    10. Sha Jiang & Tingting Li & Xin Liao, 2018. "Distributional expansions on extremes from skew-normal distribution under power normalization," Statistical Papers, Springer, vol. 59(1), pages 1-20, March.
    11. Bhati, Deepesh & Ravi, Sreenivasan, 2017. "Some new characterizations of max domains of attraction of Fréchet and log-Fréchet laws under power normalization," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 92-99.
    12. E. Nigm, 2006. "Bootstrapping extremes of random variables under power normalization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 257-269, June.
    13. Iksanov, Alexander, 2012. "On the number of empty boxes in the Bernoulli sieve II," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2701-2729.
    14. Li, Ming & Li, Jia-Yue, 2017. "Generalized Cauchy model of sea level fluctuations with long-range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 309-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:85:y:2023:i:2:d:10.1007_s13171-022-00304-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.