IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v85y2023i2d10.1007_s13171-022-00295-2.html
   My bibliography  Save this article

On Resolving Problems with Conditionality and Its Implications for Characterizing Statistical Evidence

Author

Listed:
  • Michael Evans

    (University of Toronto)

  • Constantine Frangakis

    (Johns Hopkins University)

Abstract

The conditionality principle C plays a key role in attempts to characterize the concept of statistical evidence. The standard version of C considers a model and a derived conditional model, formed by conditioning on an ancillary statistic for the model, together with the data, to be equivalent with respect to their statistical evidence content. This equivalence is considered to hold for any ancillary statistic for the model but creates two problems. First, there can be more than one maximal ancillary in a given context and this leads to C not being an equivalence relation and, as such, calls into question whether C is a proper characterization of statistical evidence. Second, a statistic A can change from ancillary to informative (in its marginal distribution) when another ancillary B changes, from having one known distribution PB, to having another known distribution QB. This means that the stability of ancillarity differs across ancillary statistics and raises the issue of when a statistic can be said to be truly ancillary. It is therefore natural, and practically important, to limit conditioning to the set of ancillaries whose distribution is irrelevant to the ancillary status of any other ancillary statistic. This results in a family of ancillaries for which there is a unique maximal member. This also gives a new principle for inference, the stable conditionality principle, that satisfies the criteria required for any principle whose aim is to characterize statistical evidence.

Suggested Citation

  • Michael Evans & Constantine Frangakis, 2023. "On Resolving Problems with Conditionality and Its Implications for Characterizing Statistical Evidence," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1103-1126, August.
  • Handle: RePEc:spr:sankha:v:85:y:2023:i:2:d:10.1007_s13171-022-00295-2
    DOI: 10.1007/s13171-022-00295-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-022-00295-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-022-00295-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:85:y:2023:i:2:d:10.1007_s13171-022-00295-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.