IDEAS home Printed from https://ideas.repec.org/a/spr/rvmgts/v18y2024i10d10.1007_s11846-023-00706-0.html
   My bibliography  Save this article

Testing for signal-to-noise ratio in linear regression: a test under large or massive sample

Author

Listed:
  • Jae H. Kim

    (Independent researcher)

  • Philip I. Ji

    (Dongguk University Seoul)

Abstract

This paper proposes a test for the signal-to-noise ratio applicable to a range of significance tests and model diagnostics in a linear regression model. It is particularly useful when sample size is large or massive, where, as a consequence, conventional tests frequently lead to inappropriate rejection of the null hypothesis. The test is conducted in the context of the traditional F-test, with its critical values increasing with sample size. It maintains desirable size properties under a large or massive sample size, when the null hypothesis is violated by a practically negligible margin. The test is widely applicable to many empirical studies in business and management.

Suggested Citation

  • Jae H. Kim & Philip I. Ji, 2024. "Testing for signal-to-noise ratio in linear regression: a test under large or massive sample," Review of Managerial Science, Springer, vol. 18(10), pages 3007-3024, October.
  • Handle: RePEc:spr:rvmgts:v:18:y:2024:i:10:d:10.1007_s11846-023-00706-0
    DOI: 10.1007/s11846-023-00706-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11846-023-00706-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11846-023-00706-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deirdre N. McCloskey & Stephen T. Ziliak, 1996. "The Standard Error of Regressions," Journal of Economic Literature, American Economic Association, vol. 34(1), pages 97-114, March.
    2. Jae H. Kim & In Choi, 2021. "Choosing the Level of Significance: A Decision‐theoretic Approach," Abacus, Accounting Foundation, University of Sydney, vol. 57(1), pages 27-71, March.
    3. Andres Algaba & David Ardia & Keven Bluteau & Samuel Borms & Kris Boudt, 2020. "Econometrics Meets Sentiment: An Overview Of Methodology And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 512-547, July.
    4. Kim, Jae H. & Ji, Philip Inyeob, 2015. "Significance testing in empirical finance: A critical review and assessment," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 1-14.
    5. James A. Ohlson, 2015. "Accounting Research and Common Sense," Abacus, Accounting Foundation, University of Sydney, vol. 51(4), pages 525-535, December.
    6. Campbell R. Harvey, 2017. "Presidential Address: The Scientific Outlook in Financial Economics," Journal of Finance, American Finance Association, vol. 72(4), pages 1399-1440, August.
    7. De Long, J Bradford & Lang, Kevin, 1992. "Are All Economic Hypotheses False?," Journal of Political Economy, University of Chicago Press, vol. 100(6), pages 1257-1272, December.
    8. Kaplanski, Guy & Levy, Haim, 2010. "Exploitable Predictable Irrationality: The FIFA World Cup Effect on the U.S. Stock Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(2), pages 535-553, April.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    11. Jae H. Kim & Kamran Ahmed & Philip Inyeob Ji, 2018. "Significance Testing in Accounting Research: A Critical Evaluation Based on Evidence," Abacus, Accounting Foundation, University of Sydney, vol. 54(4), pages 524-546, December.
    12. Alex Edmans & Diego García & Øyvind Norli, 2007. "Sports Sentiment and Stock Returns," Journal of Finance, American Finance Association, vol. 62(4), pages 1967-1998, August.
    13. Johnstone, David, 2022. "Accounting research and the significance test crisis," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 89(C).
    14. Aris Spanos, 2018. "Mis†Specification Testing In Retrospect," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 541-577, April.
    15. Edward E. Leamer, 1988. "3 Things That Bother Me," The Economic Record, The Economic Society of Australia, vol. 64(4), pages 331-335, December.
    16. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    17. Ronald L. Wasserstein & Nicole A. Lazar, 2016. "The ASA's Statement on p -Values: Context, Process, and Purpose," The American Statistician, Taylor & Francis Journals, vol. 70(2), pages 129-133, May.
    18. Hong, Harrison & Kubik, Jeffrey D. & Fishman, Tal, 2012. "Do arbitrageurs amplify economic shocks?," Journal of Financial Economics, Elsevier, vol. 103(3), pages 454-470.
    19. repec:bla:ecorec:v:64:y:1988:i:187:p:331-35 is not listed on IDEAS
    20. Mingfeng Lin & Henry C. Lucas & Galit Shmueli, 2013. "Research Commentary ---Too Big to Fail: Large Samples and the p -Value Problem," Information Systems Research, INFORMS, vol. 24(4), pages 906-917, December.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae H. Kim, 2022. "Moving to a world beyond p-value," Review of Managerial Science, Springer, vol. 16(8), pages 2467-2493, November.
    2. Kim, Jae H. & Shamsuddin, Abul, 2023. "Stock market anomalies: An extreme bounds analysis," International Review of Financial Analysis, Elsevier, vol. 90(C).
    3. Kim, Jae H., 2017. "Stock returns and investors' mood: Good day sunshine or spurious correlation?," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 94-103.
    4. Jae H. Kim & Kamran Ahmed & Philip Inyeob Ji, 2018. "Significance Testing in Accounting Research: A Critical Evaluation Based on Evidence," Abacus, Accounting Foundation, University of Sydney, vol. 54(4), pages 524-546, December.
    5. Jae H. Kim & Andrew P. Robinson, 2019. "Interval-Based Hypothesis Testing and Its Applications to Economics and Finance," Econometrics, MDPI, vol. 7(2), pages 1-22, May.
    6. Johnstone, David, 2022. "Accounting research and the significance test crisis," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 89(C).
    7. Michaelides, Michael, 2021. "Large sample size bias in empirical finance," Finance Research Letters, Elsevier, vol. 41(C).
    8. Todd Mitton, 2022. "Methodological Variation in Empirical Corporate Finance," The Review of Financial Studies, Society for Financial Studies, vol. 35(2), pages 527-575.
    9. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, July.
    10. Jerome Geyer-Klingeberg & Markus Hang & Matthias Walter & Andreas Rathgeber, 2018. "Do stock markets react to soccer games? A meta-regression analysis," Applied Economics, Taylor & Francis Journals, vol. 50(19), pages 2171-2189, April.
    11. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    12. Erik Johannesson & James A. Ohlson & Sophia Weihuan Zhai, 2024. "The explanatory power of explanatory variables," Review of Accounting Studies, Springer, vol. 29(4), pages 3053-3083, December.
    13. Chia-Lin Chang & Shu-Han Hsu & Michael McAleer, 2018. "An Event Study Analysis of Political Events, Disasters, and Accidents for Chinese Tourists to Taiwan," Sustainability, MDPI, vol. 10(11), pages 1-77, November.
    14. Nathan Jensen, 2007. "International institutions and market expectations: Stock price responses to the WTO ruling on the 2002 U.S. steel tariffs," The Review of International Organizations, Springer, vol. 2(3), pages 261-280, September.
    15. Yok-Yong Lee & M. H. Yahya & A. M. Bany-Ariffin & S. Aslam, 2018. "Leverage Effect and Switching of Market Efficiency Post Goods and Services Tax (GST) Imposition," International Business Research, Canadian Center of Science and Education, vol. 11(3), pages 162-178, March.
    16. Dutta, Shantanu & Essaddam, Naceur & Kumar, Vinod & Saadi, Samir, 2017. "How does electronic trading affect efficiency of stock market and conditional volatility? Evidence from Toronto Stock Exchange," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 867-877.
    17. Bachar Fakhry & Christian Richter, 2018. "Does the Federal Constitutional Court Ruling Mean the German Financial Market is Efficient?," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 4(2), pages 111-125.
    18. Konstantinos Drakos, 2009. "Cross-Country Stock Market Reactions to Major Terror Events: The Role of Risk Perception," Economics of Security Working Paper Series 16, DIW Berlin, German Institute for Economic Research.
    19. Kaplanski, Guy & Levy, Haim, 2010. "Exploitable Predictable Irrationality: The FIFA World Cup Effect on the U.S. Stock Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(2), pages 535-553, April.
    20. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.

    More about this item

    Keywords

    Effect size; Large sample size bias; Statistical inference; False positive;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:rvmgts:v:18:y:2024:i:10:d:10.1007_s11846-023-00706-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.