IDEAS home Printed from https://ideas.repec.org/a/spr/reecde/v6y2001i2p289-304.html
   My bibliography  Save this article

original papers : Transversals, systems of distinct representatives, mechanism design, and matching

Author

Listed:
  • Leonid Hurwicz
  • Stanley Reiter

Abstract

A transversal generated by a system of distinct representatives (SDR) for a collection of sets consists of an element from each set (its representative) such that the representative uniquely identifies the set it belongs to. Theorem 1 gives a necessary and sufficient condition that an arbitrary collection, finite or infinite, of sets, finite or infinite, have an SDR. The proof is direct, short. A Corollary to Theorem 1 shows explicitly the application to matching problems. In the context of designing decentralized economic mechanisms, it turned out to be important to know when one can construct an SDR for a collection of sets that cover the parameter space characterizing a finite number of economic agents. The condition of Theorem 1 is readily verifiable in that economic context. Theorems 2-5 give different characterizations of situations in which the collection of sets is a partition. This is of interest because partitions have special properties of informational efficiency.

Suggested Citation

  • Leonid Hurwicz & Stanley Reiter, 2001. "original papers : Transversals, systems of distinct representatives, mechanism design, and matching," Review of Economic Design, Springer;Society for Economic Design, vol. 6(2), pages 289-304.
  • Handle: RePEc:spr:reecde:v:6:y:2001:i:2:p:289-304
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/10058/papers/1006002/10060289.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:reecde:v:6:y:2001:i:2:p:289-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.