IDEAS home Printed from https://ideas.repec.org/a/spr/reecde/v4y1999i2p153-160.html
   My bibliography  Save this article

A social choice function implementable via backward induction with values in the ultimate uncovered set

Author

Listed:
  • Michel Le Breton

    (CORE, Voie du Roman Pays, 34, B-1348, Louvain-la-Neuve, Belgium)

  • Peter J. Coughlan

    (Harvard University, Graduate School of Business Administration, Morgan Hall 217, Soldiers Field Road, Boston, MA 02163, USA)

Abstract

We prove the existence of a social choice function implementable via backward induction which always selects within the ultimate uncovered set. Whereas the uncovered set is the set of maximal elements of the covering relation, the ultimate uncovered set is the set obtained by iterative application of this covering operation. Dutta and Sen (1993) showed that any social choice function which is the solution of a generalized binary voting procedure is implementable via backward induction. Our result follows from Dutta and Sen's theorem, in that we construct a binary voting procedure always selecting within the ultimate uncovered set. We use the classical multistage elimination procedure, which always selects an alternative within the uncovered set. When this procedure is also used to select among all of the possible agendas or orderings of alternatives within the procedure, the alternative selected (from the agenda selected) will be within the uncovered set of the uncovered set. Our result follows from repeated application of this construction. Intuitively, the procedure constructed consists of requiring agents to vote on how they should vote and so on.

Suggested Citation

  • Michel Le Breton & Peter J. Coughlan, 1999. "A social choice function implementable via backward induction with values in the ultimate uncovered set," Review of Economic Design, Springer;Society for Economic Design, vol. 4(2), pages 153-160.
  • Handle: RePEc:spr:reecde:v:4:y:1999:i:2:p:153-160
    Note: Received: 7 April 1997 / Accepted: 15 October 1998
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/10058/papers/9004002/90040153.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horan, Sean Michael, 2021. "Agendas in legislative decision-making," Theoretical Economics, Econometric Society, vol. 16(1), January.
    2. Hannu Vartiainen, 2008. "Dynamic stable set," Discussion Papers 33, Aboa Centre for Economics.
    3. Hannu Vartiainen, 2007. "Dynamic Farsighted Stability," Discussion Papers 22, Aboa Centre for Economics.

    More about this item

    Keywords

    Implementation via backward induction; Condorcet social choice function; ultimate uncovered set; binary voting procedure; majority-rule tournament;
    All these keywords.

    JEL classification:

    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • D78 - Microeconomics - - Analysis of Collective Decision-Making - - - Positive Analysis of Policy Formulation and Implementation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:reecde:v:4:y:1999:i:2:p:153-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.