IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v84y2016i1d10.1007_s11134-016-9483-0.html
   My bibliography  Save this article

Invariant measures and error bounds for random walks in the quarter-plane based on sums of geometric terms

Author

Listed:
  • Yanting Chen

    (Hunan University
    University of Twente)

  • Richard J. Boucherie

    (University of Twente)

  • Jasper Goseling

    (University of Twente)

Abstract

We consider homogeneous random walks in the quarter-plane. The necessary conditions which characterize random walks of which the invariant measure is a sum of geometric terms are provided in Chen et al. ( arXiv:1304.3316 , 2013, Probab Eng Informational Sci 29(02):233–251, 2015). Based on these results, we first develop an algorithm to check whether the invariant measure of a given random walk is a sum of geometric terms. We also provide the explicit form of the invariant measure if it is a sum of geometric terms. Second, for random walks of which the invariant measure is not a sum of geometric terms, we provide an approximation scheme to obtain error bounds for the performance measures. Our results can be applied to the analysis of two-node queueing systems. We demonstrate this by applying our results to a tandem queue with server slow-down.

Suggested Citation

  • Yanting Chen & Richard J. Boucherie & Jasper Goseling, 2016. "Invariant measures and error bounds for random walks in the quarter-plane based on sums of geometric terms," Queueing Systems: Theory and Applications, Springer, vol. 84(1), pages 21-48, October.
  • Handle: RePEc:spr:queues:v:84:y:2016:i:1:d:10.1007_s11134-016-9483-0
    DOI: 10.1007/s11134-016-9483-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-016-9483-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-016-9483-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masakiyo Miyazawa, 2011. "Light tail asymptotics in multidimensional reflecting processes for queueing networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 233-299, December.
    2. Masakiyo Miyazawa, 2009. "Tail Decay Rates in Double QBD Processes and Related Reflected Random Walks," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 547-575, August.
    3. Nico M. Dijk, 2011. "Error Bounds and Comparison Results: The Markov Reward Approach For Queueing Networks," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. Dijk (ed.), Queueing Networks, chapter 9, pages 397-459, Springer.
    4. Masakiyo Miyazawa, 2011. "Rejoinder on: Light tail asymptotics in multidimensional reflecting processes for queueing networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 313-316, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanting Chen & Richard J. Boucherie & Jasper Goseling, 2020. "Necessary conditions for the compensation approach for a random walk in the quarter-plane," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 257-277, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toshihisa Ozawa, 2021. "Asymptotic properties of the occupation measure in a multidimensional skip-free Markov-modulated random walk," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 125-161, February.
    2. Kamil Demirberk Ünlü & Ali Devin Sezer, 2020. "Excessive backlog probabilities of two parallel queues," Annals of Operations Research, Springer, vol. 293(1), pages 141-174, October.
    3. Toshihisa Ozawa & Masahiro Kobayashi, 2018. "Exact asymptotic formulae of the stationary distribution of a discrete-time two-dimensional QBD process," Queueing Systems: Theory and Applications, Springer, vol. 90(3), pages 351-403, December.
    4. Yanting Chen & Richard J. Boucherie & Jasper Goseling, 2020. "Necessary conditions for the compensation approach for a random walk in the quarter-plane," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 257-277, April.
    5. Toshihisa Ozawa, 2022. "Tail asymptotics in any direction of the stationary distribution in a two-dimensional discrete-time QBD process," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 227-267, October.
    6. Yiqiang Q. Zhao, 2022. "The kernel method tail asymptotics analytic approach for stationary probabilities of two-dimensional queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 100(1), pages 95-131, February.
    7. Mihail Bazhba & Chang-Han Rhee & Bert Zwart, 2022. "Large deviations for stochastic fluid networks with Weibullian tails," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 25-52, October.
    8. Ioannis Dimitriou, 2022. "Stationary analysis of certain Markov-modulated reflected random walks in the quarter plane," Annals of Operations Research, Springer, vol. 310(2), pages 355-387, March.
    9. Ioannis Dimitriou, 2021. "On partially homogeneous nearest-neighbour random walks in the quarter plane and their application in the analysis of two-dimensional queues with limited state-dependency," Queueing Systems: Theory and Applications, Springer, vol. 98(1), pages 95-143, June.
    10. Michael C. Fu & Bernd Heidergott & Haralambie Leahu & Felisa J. Vázquez-Abad, 2020. "Differentiation via Logarithmic Expansions," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-13, January.
    11. Khanchi, Aziz & Lamothe, Gilles, 2011. "Simulating tail asymptotics of a Markov chain," Statistics & Probability Letters, Elsevier, vol. 81(9), pages 1392-1397, September.
    12. Wendi Li & Yuanyuan Liu & Yiqiang Q. Zhao, 2019. "Exact tail asymptotics for fluid models driven by an M/M/c queue," Queueing Systems: Theory and Applications, Springer, vol. 91(3), pages 319-346, April.
    13. Aziz Khanchi, 2012. "Asymptotics of Markov Additive Chains on a Half-Plane: A Ratio Limit Theorem," Journal of Theoretical Probability, Springer, vol. 25(1), pages 62-76, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:84:y:2016:i:1:d:10.1007_s11134-016-9483-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.