IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v104y2023i1d10.1007_s11134-023-09876-w.html
   My bibliography  Save this article

Thirty-six years of contributions to queueing systems: a content analysis, topic modeling, and graph-based exploration of research published in the QUESTA journal

Author

Listed:
  • Aminath Shausan

    (The University of Queensland)

  • Aapeli Vuorinen

    (Columbia University)

Abstract

We investigate the 36-year history of research published in the journal Queueing Systems: Theory and Applications (QUESTA), to uncover trends over time in the research topics and themes covered as well as in authorship, co-authorship, and institutional affiliation. Our analysis includes three different approaches. First, we conduct a content analysis of titles and abstracts using selected keywords to examine trends in the three themes of models, methods, and concepts applied in each article. Second, we employ unsupervised topic modeling to identify more hidden topics discussed in the journal. Finally, we analyze the co-authorship graph to identify trends in co-authorship and changes in collaboration practices between authors and their research institutions. Our findings reveal a persistent popularity of studies focused on the basic modeling of queues, queueing networks, and queueing systems. We also confirm an increase in collaboration among authors over time.

Suggested Citation

  • Aminath Shausan & Aapeli Vuorinen, 2023. "Thirty-six years of contributions to queueing systems: a content analysis, topic modeling, and graph-based exploration of research published in the QUESTA journal," Queueing Systems: Theory and Applications, Springer, vol. 104(1), pages 3-18, June.
  • Handle: RePEc:spr:queues:v:104:y:2023:i:1:d:10.1007_s11134-023-09876-w
    DOI: 10.1007/s11134-023-09876-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-023-09876-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-023-09876-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chyi-Kwei Yau & Alan Porter & Nils Newman & Arho Suominen, 2014. "Clustering scientific documents with topic modeling," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 767-786, September.
    2. Jiang, Hanchen & Qiang, Maoshan & Lin, Peng, 2016. "A topic modeling based bibliometric exploration of hydropower research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 226-237.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afful-Dadzie, Eric & Afful-Dadzie, Anthony, 2017. "Liberation of public data: Exploring central themes in open government data and freedom of information research," International Journal of Information Management, Elsevier, vol. 37(6), pages 664-672.
    2. Tingcan Ma & Ruinan Li & Guiyan Ou & Mingliang Yue, 2018. "Topic based research competitiveness evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 789-803, November.
    3. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Hoang, Yen Hai & Ngo, Vu Minh & Bich Vu, Ngoc, 2023. "Central bank digital currency: A systematic literature review using text mining approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    5. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    6. Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
    7. Debnath, R. & Darby, S. & Bardhan, R. & Mohaddes, K. & Sunikka-Blank, M., 2020. "Grounded reality meets machine learning: A deep-narrative analysis framework for energy policy research," Cambridge Working Papers in Economics 2062, Faculty of Economics, University of Cambridge.
    8. Xie, Xiaomin & Jiang, Xiaoyun & Zhang, Tingting & Huang, Zhen, 2019. "Regional water footprints assessment for hydroelectricity generation in China," Renewable Energy, Elsevier, vol. 138(C), pages 316-325.
    9. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    10. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    11. Jihong Chen & Kai Zhang & Yuan Zhou & Yufei Liu & Lingfeng Li & Zheng Chen & Li Yin, 2019. "Exploring the Development of Research, Technology and Business of Machine Tool Domain in New-Generation Information Technology Environment Based on Machine Learning," Sustainability, MDPI, vol. 11(12), pages 1-38, June.
    12. Sabrina L. Woltmann & Lars Alkærsig, 2018. "Tracing university–industry knowledge transfer through a text mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 449-472, October.
    13. Bai, Xiwen & Zhang, Xiunian & Li, Kevin X. & Zhou, Yaoming & Yuen, Kum Fai, 2021. "Research topics and trends in the maritime transport: A structural topic model," Transport Policy, Elsevier, vol. 102(C), pages 11-24.
    14. Zhang, Yi & Zhang, Guangquan & Chen, Hongshu & Porter, Alan L. & Zhu, Donghua & Lu, Jie, 2016. "Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 179-191.
    15. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    16. Scherer, Laura & Pfister, Stephan, 2016. "Global water footprint assessment of hydropower," Renewable Energy, Elsevier, vol. 99(C), pages 711-720.
    17. Andrea Zielinski, 2022. "Impact of model settings on the text-based Rao diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7751-7768, December.
    18. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    19. Ćurlin Tamara & Jaković Božidar & Miloloža Ivan, 2019. "Twitter usage in Tourism: Literature Review," Business Systems Research, Sciendo, vol. 10(1), pages 102-119, April.
    20. Ting Xiong & Liang Zhou & Ying Zhao & Xiaojuan Zhang, 2022. "Mining semantic information of co-word network to improve link prediction performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 2981-3004, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:104:y:2023:i:1:d:10.1007_s11134-023-09876-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.