IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v57y2023i2d10.1007_s11135-022-01611-6.html
   My bibliography  Save this article

Multi-country clustering-based forecasting of healthy life expectancy

Author

Listed:
  • Susanna Levantesi

    (Sapienza University of Rome)

  • Andrea Nigri

    (University of Foggia)

  • Gabriella Piscopo

    (University of Naples Federico II)

  • Alessandro Spelta

    (Pavia University)

Abstract

Healthy life expectancy (HLE) is an indicator that measures the number of years individuals at a given age are expected to live free of disease or disability. HLE forecasting is essential for planning the provision of health care to elderly populations and appropriately pricing Long Term Care insurance products. In this paper, we propose a methodology that simultaneously forecasts HLE for groups of countries and allows for investigating similarities in their HLE patterns. We firstly apply a functional data clustering to the multivariate time series of HLE at birth of different countries for the years 1990–2019 provided by the Global Burden of Disease Study. Three clusters are identified for both genders. Then, we carry out the HLE simultaneous forecasting of the populations within each cluster by a multivariate random walk with drift. Numerical results and the statistical significance of the parameters of the identified multivariate processes are shown. Demographic evidences on the different evolution of HLE between countries are commented.

Suggested Citation

  • Susanna Levantesi & Andrea Nigri & Gabriella Piscopo & Alessandro Spelta, 2023. "Multi-country clustering-based forecasting of healthy life expectancy," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 189-215, December.
  • Handle: RePEc:spr:qualqt:v:57:y:2023:i:2:d:10.1007_s11135-022-01611-6
    DOI: 10.1007/s11135-022-01611-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-022-01611-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-022-01611-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:57:y:2023:i:2:d:10.1007_s11135-022-01611-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.