IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v52y2018i1d10.1007_s11135-017-0647-8.html
   My bibliography  Save this article

Two-strain epidemic model with two vaccinations and two time delayed

Author

Listed:
  • Bilgen Kaymakamzade

    (Near East University)

  • Evren Hincal

    (Near East University)

Abstract

In this paper, a delayed epidemic model consisting of two strains with vaccine for each strain is formulated. The model consist of four equilibrium points; disease free equilibrium, endemic with respect to strain 1, endemic with respect to strain 2, and endemic with respect to both strains. The global stability analysis of the equilibrium points was carried out through the use of Lyapunov functions. Two basic reproduction ratios R 1 and R 2 are found, and we have shown that, if both are less than one, the disease dies out, if one of the ratios is less than one, epidemic occurs with respect to the other. It was also shown that, any strain with highest basic reproduction ratio will automatically outperform the other strain, thereby eliminating it. Condition for the existence of endemic equilibria was also given. Numerical simulations were carried out to support the analytic results and to show the effect of vaccine for strain 1 against strain 2 and the vaccine for strain 2 against strain 1. It is found that the population for infectives to strain 2 increases when vaccine for strain 1 is absent and viceversa.

Suggested Citation

  • Bilgen Kaymakamzade & Evren Hincal, 2018. "Two-strain epidemic model with two vaccinations and two time delayed," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 695-709, December.
  • Handle: RePEc:spr:qualqt:v:52:y:2018:i:1:d:10.1007_s11135-017-0647-8
    DOI: 10.1007/s11135-017-0647-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-017-0647-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-017-0647-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Zhiting & Qu, Liangcheng & Huang, Yehui, 2016. "Global dynamics of a two-strain flu model with delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 124(C), pages 44-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farah, El Mehdi & Amine, Saida & Allali, Karam, 2021. "Dynamics of a time-delayed two-strain epidemic model with general incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    2. Hui Chen & Xuewen Tan & Jun Wang & Wenjie Qin & Wenhui Luo, 2023. "Stochastic Dynamics of a Virus Variant Epidemic Model with Double Inoculations," Mathematics, MDPI, vol. 11(7), pages 1-29, April.
    3. Chen, Zhenwu & Xu, Zhiting, 2019. "A delayed diffusive influenza model with two-strain and two vaccinations," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 439-453.
    4. Baba, Isa Abdullahi & Abdulkadir, Rabiu Aliyu & Esmaili, Parvaneh, 2020. "Analysis of tuberculosis model with saturated incidence rate and optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhenwu & Xu, Zhiting, 2019. "A delayed diffusive influenza model with two-strain and two vaccinations," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 439-453.
    2. Farah, El Mehdi & Amine, Saida & Allali, Karam, 2021. "Dynamics of a time-delayed two-strain epidemic model with general incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:52:y:2018:i:1:d:10.1007_s11135-017-0647-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.