IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v47y2013i6p3481-3492.html
   My bibliography  Save this article

Incorporating support vector machines with multiple criteria decision making for financial crisis analysis

Author

Listed:
  • Ming-Fu Hsu
  • Ping-Feng Pai

Abstract

Feature selection is an essential pre-processing technique in data mining that eliminates redundant or unrepresentative attributes and improves the performance of classifiers. However, a classifier with different feature selection approaches results in diverse outcomes. Thus, determining how to integrate feature selection methods and yield an appropriate feature set is an issue worth further study. Based on ensemble learning, this investigation develops a SVMMCDM (support vector machines with multiple criteria decision making) model that employs various feature selection techniques as data preprocessing schemes and then uses SVM for financial crisis prediction. The study uses MCDM to determine the most suitable feature selection mechanism when many performance criteria are considered. After the feature selection mechanism has been determined, the study decomposes the SVM to obtain support vectors and predicted labels which are then fed into a decision tree to generate rules. The numerical results for the ex-ante and ex-post periods relative to the financial tsunami show that the proposed SVMMCDM model is an effective way to predict a financial crisis and can provide useful rules for decision makers. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Ming-Fu Hsu & Ping-Feng Pai, 2013. "Incorporating support vector machines with multiple criteria decision making for financial crisis analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(6), pages 3481-3492, October.
  • Handle: RePEc:spr:qualqt:v:47:y:2013:i:6:p:3481-3492
    DOI: 10.1007/s11135-012-9735-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-012-9735-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-012-9735-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chi Xie & Changqing Luo & Xiang Yu, 2011. "Financial distress prediction based on SVM and MDA methods: the case of Chinese listed companies," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(3), pages 671-686, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas Evangelopoulos & S. Yasaman Amirkiaee, 2020. "Extracting LSA topics as features for text classifiers across different knowledge domains," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 249-261, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Alaminos & Manuel Ángel Fernández, 2019. "Why do football clubs fail financially? A financial distress prediction model for European professional football industry," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-15, December.
    2. Salima Smiti & Makram Soui, 2020. "Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE," Information Systems Frontiers, Springer, vol. 22(5), pages 1067-1083, October.
    3. Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
    4. Mostafaei, Kamran & maleki, Shaho & Zamani Ahmad Mahmoudi, Mohammad & Knez, Dariusz, 2022. "Risk management prediction of mining and industrial projects by support vector machine," Resources Policy, Elsevier, vol. 78(C).
    5. Lenka Papíková & Mário Papík, 2022. "Effects of classification, feature selection, and resampling methods on bankruptcy prediction of small and medium‐sized enterprises," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 254-281, October.
    6. Fereshteh Taromideh & Ramin Fazloula & Bahram Choubin & Alireza Emadi & Ronny Berndtsson, 2022. "Urban Flood-Risk Assessment: Integration of Decision-Making and Machine Learning," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    7. Feng Shen & Yunwen Ma & Run Wang & Ningning Pan & Zhiyi Meng, 2019. "Does environmental performance affect financial performance? Evidence from Chinese listed companies in heavily polluting industries," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1941-1958, July.
    8. Pawan Kumar Singh & Anushka Chouhan & Rajiv Kumar Bhatt & Ravi Kiran & Ansari Saleh Ahmar, 2022. "Implementation of the SutteARIMA method to predict short-term cases of stock market and COVID-19 pandemic in USA," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2023-2033, August.
    9. Fernández-Gámez, Manuel Ángel & Soria, Juan Antonio Campos & Santos, José António C. & Alaminos, David, 2020. "European country heterogeneity in financial distress prediction: An empirical analysis with macroeconomic and regulatory factors," Economic Modelling, Elsevier, vol. 88(C), pages 398-407.
    10. Xiaobo Tang & Shixuan Li & Mingliang Tan & Wenxuan Shi, 2020. "Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 769-787, August.
    11. Zhen Jia Liu & Yi Shu Wang, 2016. "Corporate Failure Prediction Models for Advanced Research in China: Identifying the Optimal Cut Off Point," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(1), pages 54-65, January.
    12. Jie Sun & Mengjie Zhou & Wenguo Ai & Hui Li, 2019. "Dynamic prediction of relative financial distress based on imbalanced data stream: from the view of one industry," Risk Management, Palgrave Macmillan, vol. 21(4), pages 215-242, December.
    13. Yinghua Song & Minzhe Jiang & Shixuan Li & Shengzhe Zhao, 2024. "Class‐imbalanced financial distress prediction with machine learning: Incorporating financial, management, textual, and social responsibility features into index system," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 593-614, April.
    14. Mahtani, Umesh S. & Garg, Chandra Prakash, 2018. "An analysis of key factors of financial distress in airline companies in India using fuzzy AHP framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 87-102.
    15. Sabek Amine, 2023. "Unveiling the diverse efficacy of artificial neural networks and logistic regression: A comparative analysis in predicting financial distress," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 9(1), pages 16-32, July.
    16. Egor O. Bukharin & Sofia I. Mangileva & Vladislav V. Afanasev, 2024. "Default Prediction for Russian Food Service Firms: Contribution of Non-Financial Factors and Machine Learning," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(1), pages 206-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:47:y:2013:i:6:p:3481-3492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.