IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v88y2023i4d10.1007_s11336-023-09931-8.html
   My bibliography  Save this article

Estimating and Using Block Information in the Thurstonian IRT Model

Author

Listed:
  • Susanne Frick

    (University of Mannheim
    TU Dortmund University)

Abstract

Multidimensional forced-choice (MFC) tests are increasing in popularity but their construction is complex. The Thurstonian item response model (Thurstonian IRT model) is most often used to score MFC tests that contain dominance items. Currently, in a frequentist framework, information about the latent traits in the Thurstonian IRT model is computed for binary outcomes of pairwise comparisons, but this approach neglects stochastic dependencies. In this manuscript, it is shown how to estimate Fisher information on the block level. A simulation study showed that the observed and expected standard errors based on the block information were similarly accurate. When local dependencies for block sizes $$>\,2$$ > 2 were neglected, the standard errors were underestimated, except with the maximum a posteriori estimator. It is shown how the multidimensional block information can be summarized for test construction. A simulation study and an empirical application showed small differences between the block information summaries depending on the outcome considered. Thus, block information can aid the construction of reliable MFC tests.

Suggested Citation

  • Susanne Frick, 2023. "Estimating and Using Block Information in the Thurstonian IRT Model," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1556-1589, December.
  • Handle: RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-023-09931-8
    DOI: 10.1007/s11336-023-09931-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-023-09931-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-023-09931-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-023-09931-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.