IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v88y2023i4d10.1007_s11336-022-09888-0.html
   My bibliography  Save this article

A Bayesian Approach Towards Missing Covariate Data in Multilevel Latent Regression Models

Author

Listed:
  • Christian Aßmann

    (Leibniz Institute for Educational Trajectories Bamberg
    Otto-Friedrich-Universität Bamberg)

  • Jean-Christoph Gaasch

    (Otto-Friedrich-Universität Bamberg)

  • Doris Stingl

    (Otto-Friedrich-Universität Bamberg)

Abstract

The measurement of latent traits and investigation of relations between these and a potentially large set of explaining variables is typical in psychology, economics, and the social sciences. Corresponding analysis often relies on surveyed data from large-scale studies involving hierarchical structures and missing values in the set of considered covariates. This paper proposes a Bayesian estimation approach based on the device of data augmentation that addresses the handling of missing values in multilevel latent regression models. Population heterogeneity is modeled via multiple groups enriched with random intercepts. Bayesian estimation is implemented in terms of a Markov chain Monte Carlo sampling approach. To handle missing values, the sampling scheme is augmented to incorporate sampling from the full conditional distributions of missing values. We suggest to model the full conditional distributions of missing values in terms of non-parametric classification and regression trees. This offers the possibility to consider information from latent quantities functioning as sufficient statistics. A simulation study reveals that this Bayesian approach provides valid inference and outperforms complete cases analysis and multiple imputation in terms of statistical efficiency and computation time involved. An empirical illustration using data on mathematical competencies demonstrates the usefulness of the suggested approach.

Suggested Citation

  • Christian Aßmann & Jean-Christoph Gaasch & Doris Stingl, 2023. "A Bayesian Approach Towards Missing Covariate Data in Multilevel Latent Regression Models," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1495-1528, December.
  • Handle: RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-022-09888-0
    DOI: 10.1007/s11336-022-09888-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-022-09888-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-022-09888-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-022-09888-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.