IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v88y2023i4d10.1007_s11336-022-09870-w.html
   My bibliography  Save this article

A Mixed Stochastic Approximation EM (MSAEM) Algorithm for the Estimation of the Four-Parameter Normal Ogive Model

Author

Listed:
  • Xiangbin Meng

    (Northeast Normal University)

  • Gongjun Xu

    (University of Michigan)

Abstract

In recent years, the four-parameter model (4PM) has received increasing attention in item response theory. The purpose of this article is to provide more efficient and more reliable computational tools for fitting the 4PM. In particular, this article focuses on the four-parameter normal ogive model (4PNO) model and develops efficient stochastic approximation expectation maximization (SAEM) algorithms to compute the marginalized maximum a posteriori estimator. First, a data augmentation scheme is used for the 4PNO model, which makes the complete data model be an exponential family, and then, a basic SAEM algorithm is developed for the 4PNO model. Second, to overcome the drawback of the SAEM algorithm, we develop an improved SAEM algorithm for the 4PNO model, which is called the mixed SAEM (MSAEM). Results from simulation studies demonstrate that: (1) the MSAEM provides more accurate or comparable estimates as compared with the other estimation methods, while computationally more efficient; (2) the MSAEM is more robust to the choices of initial values and the priors for item parameters, which is a valuable property for practice use. Finally, a real data set is analyzed to show the good performance of the proposed methods.

Suggested Citation

  • Xiangbin Meng & Gongjun Xu, 2023. "A Mixed Stochastic Approximation EM (MSAEM) Algorithm for the Estimation of the Four-Parameter Normal Ogive Model," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1407-1442, December.
  • Handle: RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-022-09870-w
    DOI: 10.1007/s11336-022-09870-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-022-09870-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-022-09870-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-022-09870-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.