IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v83y2018i3d10.1007_s11336-018-9615-z.html
   My bibliography  Save this article

Automatic Bayes Factors for Testing Equality- and Inequality-Constrained Hypotheses on Variances

Author

Listed:
  • Florian Böing-Messing

    (Jheronimus Academy of Data Science
    Tilburg University)

  • Joris Mulder

    (Tilburg University)

Abstract

In comparing characteristics of independent populations, researchers frequently expect a certain structure of the population variances. These expectations can be formulated as hypotheses with equality and/or inequality constraints on the variances. In this article, we consider the Bayes factor for testing such (in)equality-constrained hypotheses on variances. Application of Bayes factors requires specification of a prior under every hypothesis to be tested. However, specifying subjective priors for variances based on prior information is a difficult task. We therefore consider so-called automatic or default Bayes factors. These methods avoid the need for the user to specify priors by using information from the sample data. We present three automatic Bayes factors for testing variances. The first is a Bayes factor with equal priors on all variances, where the priors are specified automatically using a small share of the information in the sample data. The second is the fractional Bayes factor, where a fraction of the likelihood is used for automatic prior specification. The third is an adjustment of the fractional Bayes factor such that the parsimony of inequality-constrained hypotheses is properly taken into account. The Bayes factors are evaluated by investigating different properties such as information consistency and large sample consistency. Based on this evaluation, it is concluded that the adjusted fractional Bayes factor is generally recommendable for testing equality- and inequality-constrained hypotheses on variances.

Suggested Citation

  • Florian Böing-Messing & Joris Mulder, 2018. "Automatic Bayes Factors for Testing Equality- and Inequality-Constrained Hypotheses on Variances," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 586-617, September.
  • Handle: RePEc:spr:psycho:v:83:y:2018:i:3:d:10.1007_s11336-018-9615-z
    DOI: 10.1007/s11336-018-9615-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-018-9615-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-018-9615-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Paul Fox & Joris Mulder & Sandip Sinharay, 2017. "Bayes Factor Covariance Testing in Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 979-1006, December.
    2. Liang, Feng & Paulo, Rui & Molina, German & Clyde, Merlise A. & Berger, Jim O., 2008. "Mixtures of g Priors for Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 410-423, March.
    3. Raymond J. Carroll, 2003. "Variances Are Not Always Nuisance Parameters," Biometrics, The International Biometric Society, vol. 59(2), pages 211-220, June.
    4. Mulder, Joris & Hoijtink, Herbert & Leeuw, Christiaan de, 2012. "BIEMS: A Fortran 90 Program for Calculating Bayes Factors for Inequality and Equality Constrained Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 46(i02).
    5. Mulder, Joris, 2014. "Prior adjusted default Bayes factors for testing (in)equality constrained hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 448-463.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixin Fang & Heng Lian & Hua Liang, 2018. "A generalized partially linear framework for variance functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1147-1175, October.
    2. Guido Consonni & Roberta Paroli, 2017. "Objective Bayesian Comparison of Constrained Analysis of Variance Models," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 589-609, September.
    3. Yiyun Shou & Michael Smithson, 2015. "Evaluating Predictors of Dispersion: A Comparison of Dominance Analysis and Bayesian Model Averaging," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 236-256, March.
    4. Mulder, Joris, 2014. "Prior adjusted default Bayes factors for testing (in)equality constrained hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 448-463.
    5. Domenico Giannone & Michele Lenza & Lucrezia Reichlin, 2011. "Market Freedom and the Global Recession," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 59(1), pages 111-135, April.
    6. Ons Jedidi & Jean Sébastien Pentecote, 2015. "Robust Signals for Banking Crises," Economics Bulletin, AccessEcon, vol. 35(3), pages 1617-1629.
    7. Anna Sokolova, 2023. "Marginal Propensity to Consume and Unemployment: a Meta-analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 813-846, December.
    8. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    9. Hasan, Iftekhar & Horvath, Roman & Mares, Jan, 2020. "Finance and wealth inequality," Journal of International Money and Finance, Elsevier, vol. 108(C).
    10. Mariam Camarero & Sergi Moliner & Cecilio Tamarit, 2021. "Is there a euro effect in the drivers of US FDI? New evidence using Bayesian model averaging techniques," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 157(4), pages 881-926, November.
    11. Ley, Eduardo & Steel, Mark F.J., 2012. "Mixtures of g-priors for Bayesian model averaging with economic applications," Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.
    12. Galharret, Jean-Michel & Philippe, Anne, 2023. "Bayesian analysis for mediation and moderation using g−priors," Econometrics and Statistics, Elsevier, vol. 27(C), pages 161-172.
    13. Jesus Crespo Cuaresma & Bettina Grün & Paul Hofmarcher & Stefan Humer & Mathias Moser, 2015. "A Comprehensive Approach to Posterior Jointness Analysis in Bayesian Model Averaging Applications," Department of Economics Working Papers wuwp193, Vienna University of Economics and Business, Department of Economics.
    14. Philipp Piribauer & Jesús Crespo Cuaresma, 2016. "Bayesian Variable Selection in Spatial Autoregressive Models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 11(4), pages 457-479, October.
    15. Ley, Eduardo & Steel, Mark F. J., 2007. "On the effect of prior assumptions in Bayesian model averaging with applications to growth regression," Policy Research Working Paper Series 4238, The World Bank.
    16. Forte, Anabel & Peiró-Palomino, Jesús & Tortosa-Ausina, Emili, 2015. "Does social capital matter for European regional growth?," European Economic Review, Elsevier, vol. 77(C), pages 47-64.
    17. Aart Kraay & Norikazu Tawara, 2013. "Can specific policy indicators identify reform priorities?," Journal of Economic Growth, Springer, vol. 18(3), pages 253-283, September.
    18. Nolan Ritter & Julia Anna Bingler, 2021. "Do homo sapiens know their prices? Insights on dysfunctional price mechanisms from a large field experiment," CER-ETH Economics working paper series 21/348, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    19. Faming Liang & Momiao Xiong, 2013. "Bayesian Detection of Causal Rare Variants under Posterior Consistency," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-16, July.
    20. Crespo Cuaresma, Jesus & von Schweinitz, Gregor & Wendt, Katharina, 2019. "On the empirics of reserve requirements and economic growth," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 253-274.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:83:y:2018:i:3:d:10.1007_s11336-018-9615-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.