Restricted Maximum Likelihood Estimation for Parameters of the Social Relations Model
Author
Abstract
Suggested Citation
DOI: 10.1007/s11336-015-9474-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Charles Bond & Brian Lashley, 1996. "Round-robin analysis of social interaction: Exact and estimated standard errors," Psychometrika, Springer;The Psychometric Society, vol. 61(2), pages 303-311, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Steffen Nestler & Oliver Lüdtke & Alexander Robitzsch, 2020. "Maximum likelihood estimation of a social relations structural equation model," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 870-889, December.
- Terrence D. Jorgensen & Aditi M. Bhangale & Yves Rosseel, 2024. "Two-Stage Limited-Information Estimation for Structural Equation Models of Round-Robin Variables," Stats, MDPI, vol. 7(1), pages 1-34, February.
- Steffen Nestler, 2018. "Likelihood Estimation of the Multivariate Social Relations Model," Journal of Educational and Behavioral Statistics, , vol. 43(4), pages 387-406, August.
- Steffen Nestler & Oliver Lüdtke & Alexander Robitzsch, 2022. "Analyzing Longitudinal Social Relations Model Data Using the Social Relations Structural Equation Model," Journal of Educational and Behavioral Statistics, , vol. 47(2), pages 231-260, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Steffen Nestler & Katharina Geukes & Roos Hutteman & Mitja D. Back, 2017. "Tackling Longitudinal Round-Robin Data: A Social Relations Growth Model," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1162-1181, December.
- Steffen Nestler & Oliver Lüdtke & Alexander Robitzsch, 2020. "Maximum likelihood estimation of a social relations structural equation model," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 870-889, December.
- Steffen Nestler, 2018. "Likelihood Estimation of the Multivariate Social Relations Model," Journal of Educational and Behavioral Statistics, , vol. 43(4), pages 387-406, August.
- Steffen Nestler & Oliver Lüdtke & Alexander Robitzsch, 2022. "Analyzing Longitudinal Social Relations Model Data Using the Social Relations Structural Equation Model," Journal of Educational and Behavioral Statistics, , vol. 47(2), pages 231-260, April.
More about this item
Keywords
social relations model; linear mixed model; restricted maximum likelihood; covariates;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:81:y:2016:i:4:d:10.1007_s11336-015-9474-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.