Author
Listed:
- Yawen Jiang
(Sun Yat-sen University)
- Jiaxin Wen
(Gusu District Center for Disease Control and Prevention)
- Jiatong Sun
(Sun Yat-sen University)
- Yuelong Shu
(Sun Yat-sen University
Chinese Academy of Medical Sciences, Peking Union Medical College)
Abstract
Background Pandemic influenza poses a recurring threat to public health. Antiviral drugs are vital in combating influenza pandemics. Baloxavir marboxil (BXM) is a novel agent that provides clinical and public health benefits in influenza treatment. Methods We constructed a linked dynamic transmission-economic evaluation model combining a modified susceptible–exposed–infected–recovered (SEIR) model and a decision tree model to evaluate the cost-effectiveness of adding BXM to oseltamivir in China’s influenza pandemic scenario. The cost-effectiveness was evaluated for the general population from the Chinese healthcare system perspective, although the users of BXM and oseltamivir were influenza-infected persons. The SEIR model simulated the transmission dynamics, dividing the population into four compartments: susceptible, exposed, infected, and recovered, while the decision tree model assessed disease severity and costs. We utilized data from clinical trials and observational studies in the literature to parameterize the models. Costs were based on 2021 CN¥ and not discounted due to a short time-frame of one year in the model. One-way, two-way, and probabilistic sensitivity analyses were also conducted. Results The integrated model demonstrated that adding BXM to treatment choices reduced the cumulative incidence of infection from 49.49% to 43.26% and increased quality-adjusted life years (QALYs) by 0.00021 per person compared with oseltamivir alone in the base-case scenario. The intervention also amounted to a positive net monetary benefit of CN¥77.85 per person at the willingness to pay of CN¥80,976 per QALY. Sensitivity analysis confirmed the robustness of these findings, with consistent results across varied key parameters and assumptions. Conclusions Adding BXM to treatment choices instead of only treating with oseltamivir for influenza pandemic control in China appears to be cost-effective compared with oseltamivir alone. The dual-agent strategy not only enhances population health outcomes and conserves resources, but also mitigates influenza transmission and alleviates healthcare burden.
Suggested Citation
Yawen Jiang & Jiaxin Wen & Jiatong Sun & Yuelong Shu, 2024.
"Evaluating the Public Health and Health Economic Impacts of Baloxavir Marboxil and Oseltamivir for Influenza Pandemic Control in China: A Cost-Effectiveness Analysis Using a Linked Dynamic Transmissio,"
PharmacoEconomics, Springer, vol. 42(10), pages 1111-1125, October.
Handle:
RePEc:spr:pharme:v:42:y:2024:i:10:d:10.1007_s40273-024-01412-9
DOI: 10.1007/s40273-024-01412-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:42:y:2024:i:10:d:10.1007_s40273-024-01412-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.