Author
Listed:
- Nasuh C. Büyükkaramikli
(Erasmus University Rotterdam)
- Saskia Groot
(Erasmus University Rotterdam)
- Debra Fayter
(Kleijnen Systematic Reviews Ltd)
- Robert Wolff
(Kleijnen Systematic Reviews Ltd)
- Nigel Armstrong
(Kleijnen Systematic Reviews Ltd)
- Lisa Stirk
(Kleijnen Systematic Reviews Ltd)
- Gill Worthy
(Kleijnen Systematic Reviews Ltd)
- Fernando Albuquerque de Almeida
(Erasmus University Rotterdam)
- Jos Kleijnen
(Kleijnen Systematic Reviews Ltd
Maastricht University)
- Maiwenn J. Al
(Erasmus University Rotterdam)
Abstract
The National Institute for Health and Care Excellence (NICE), as part of the institute’s single technology appraisal (STA) process, invited the manufacturer of pomalidomide (POM; Imnovid®, Celgene) to submit evidence regarding the clinical and cost effectiveness of the drug in combination with dexamethasone (POM + LoDEX) for the treatment of relapsed and refractory multiple myeloma (RRMM) after at least two regimens including lenalidomide (LEN) and bortezomib (BOR). Kleijnen Systematic Reviews Ltd (KSR) and Erasmus University Rotterdam were commissioned as the Evidence Review Group (ERG) for this submission. The ERG reviewed the evidence submitted by the manufacturer, validated the manufacturer’s decision analytic model, and conducted exploratory analyses in order to assess the robustness and validity of the presented clinical and cost-effectiveness results. This paper describes the company submission, the ERG assessment, and NICE’s subsequent decisions. The company conducted a systematic review to identify studies comparing POM with comparators outlined in the NICE scope: panobinostat with bortezomib and dexamethasone (PANO + BOR + DEX), bendamustine with thalidomide and dexamethasone (BTD) and conventional chemotherapy (CC). The main clinical effectiveness evidence was obtained from MM-003, a randomized controlled trial (RCT) comparing POM + LoDEX with high-dose dexamethasone (HiDEX; used as a proxy for CC). Additional data from other studies were also used as nonrandomized observational data sources for the indirect treatment comparison of POM + LoDEX with BTD and PANO + BOR + DEX. Covariate or treatment switching adjustment methods were used for each comparison. The model developed in Microsoft® Excel 2010 using a semi-Markov partitioned survival structure, submitted in the original submission to NICE for TA338, was adapted for the present assessment of the cost effectiveness of POM + LoDEX. Updated evidence from the clinical-effectiveness part was used for the survival modelling of progression-free survival and overall survival. For POM + LoDEX, the patient access scheme (PAS) discount was applied to the POM price. Three separate comparisons were conducted for each comparator, each comparison using a different dataset and adjustment methods. The ERG identified and corrected some errors, and the corrected incremental cost-effectiveness ratios (ICERs) for POM + LoDEX versus each comparator were presented: approximately £45,000 per quality-adjusted life-year (QALY) gained versus BTD, savings of approximately £143,000 per QALY lost versus PANO + BOR + DEX, and approximately £49,000 per QALY gained versus CC. The ERG also conducted full incremental analyses, which revealed that CC, POM + LoDEX and PANO + BOR + DEX were on the cost-effectiveness frontier. The committee’s decision on the technology under analysis deemed that POM + LoDEX should be recommended as an option for treating multiple myeloma in adults at third or subsequent relapse of treatments including both LEN and BOR, contingent on the company providing POM with the discount agreed in the PAS.
Suggested Citation
Nasuh C. Büyükkaramikli & Saskia Groot & Debra Fayter & Robert Wolff & Nigel Armstrong & Lisa Stirk & Gill Worthy & Fernando Albuquerque de Almeida & Jos Kleijnen & Maiwenn J. Al, 2018.
"Pomalidomide with Dexamethasone for Treating Relapsed and Refractory Multiple Myeloma Previously Treated with Lenalidomide and Bortezomib: An Evidence Review Group Perspective of an NICE Single Techno,"
PharmacoEconomics, Springer, vol. 36(2), pages 145-159, February.
Handle:
RePEc:spr:pharme:v:36:y:2018:i:2:d:10.1007_s40273-017-0581-6
DOI: 10.1007/s40273-017-0581-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:36:y:2018:i:2:d:10.1007_s40273-017-0581-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.