IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v35y2017i11d10.1007_s40273-017-0541-1.html
   My bibliography  Save this article

Mapping PROMIS Global Health Items to EuroQol (EQ-5D) Utility Scores Using Linear and Equipercentile Equating

Author

Listed:
  • Nicolas R. Thompson

    (Cleveland Clinic
    Cleveland Clinic)

  • Brittany R. Lapin

    (Cleveland Clinic
    Cleveland Clinic)

  • Irene L. Katzan

    (Cleveland Clinic)

Abstract

Background Mapping Patient-Reported Outcomes Measurement Information System–Global Health (PROMIS-GH) to EuroQol 5-dimension, three-level version (EQ-5D-3L) provides a utility score for use in quality-of-life and cost-effectiveness analyses. In 2009, Revicki et al. mapped the PROMIS-GH items to EQ-5D-3L utilities using linear regression (REVReg). More recently, regression was shown to be ill-suited for mapping to preference-based measures due to regression to the mean. Linear and equipercentile equating are alternative mapping methods that avoid the issue of regression to the mean. Another limitation of the prior models is that ordinal predictors were treated as continuous. Methods Using data collected from the PROMIS Wave 1 sample, we refit REVReg, treating the PROMIS-GH items as categorical variables (CATReg). We applied linear and equipercentile equating to the REVReg model (REVLE, REVequip) and the CATReg model (CATLE, CATequip). We validated and compared the predictive accuracy of these models in a large sample of neurological patients at a single tertiary-care hospital. Results In the neurological disease patient sample, CATLE produced the strongest correlations between estimated and observed EQ-5D-3L scores and had the lowest mean squared error. The CATequip model had the lowest mean absolute error and had estimated scores that best matched the overall distribution of observed scores. Conclusions Using linear and equipercentile equating, we created new models mapping PROMIS-GH items to EQ-5D-3L utility scores. EQ-5D-3L utility scores can be more accurately estimated using our models for use in cost-effectiveness studies or studies examining overall health-related quality of life.

Suggested Citation

  • Nicolas R. Thompson & Brittany R. Lapin & Irene L. Katzan, 2017. "Mapping PROMIS Global Health Items to EuroQol (EQ-5D) Utility Scores Using Linear and Equipercentile Equating," PharmacoEconomics, Springer, vol. 35(11), pages 1167-1176, November.
  • Handle: RePEc:spr:pharme:v:35:y:2017:i:11:d:10.1007_s40273-017-0541-1
    DOI: 10.1007/s40273-017-0541-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40273-017-0541-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40273-017-0541-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Admassu N. Lamu, 2020. "Does linear equating improve prediction in mapping? Crosswalking MacNew onto EQ-5D-5L value sets," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(6), pages 903-915, August.
    2. Mona Aghdaee & Bonny Parkinson & Kompal Sinha & Yuanyuan Gu & Rajan Sharma & Emma Olin & Henry Cutler, 2022. "An examination of machine learning to map non‐preference based patient reported outcome measures to health state utility values," Health Economics, John Wiley & Sons, Ltd., vol. 31(8), pages 1525-1557, August.
    3. Lan Gao & Wei Luo & Utsana Tonmukayakul & Marj Moodie & Gang Chen, 2021. "Mapping MacNew Heart Disease Quality of Life Questionnaire onto country-specific EQ-5D-5L utility scores: a comparison of traditional regression models with a machine learning technique," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(2), pages 341-350, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:35:y:2017:i:11:d:10.1007_s40273-017-0541-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.