IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v5y2024i5d10.1007_s42985-024-00292-0.html
   My bibliography  Save this article

The point scatterer approximation for wave dynamics

Author

Listed:
  • Andrea Mantile

    (UMR9008 CNRS et Université de Reims Champagne-Ardenne)

  • Andrea Posilicano

    (Università dell’Insubria)

Abstract

Given an open, bounded and connected set $$\Omega \subset \mathbb {R}^{3}$$ Ω ⊂ R 3 and its rescaling $$\Omega _{\varepsilon }$$ Ω ε of size $$\varepsilon \ll 1$$ ε ≪ 1 , we consider the solutions of the Cauchy problem for the inhomogeneous wave equation $$\begin{aligned} (\varepsilon ^{-2}\chi _{\Omega _{\varepsilon }}+\chi _{\mathbb {R}^{3}\backslash \Omega _{\varepsilon }})\partial _{tt}u=\Delta u+f \end{aligned}$$ ( ε - 2 χ Ω ε + χ R 3 \ Ω ε ) ∂ tt u = Δ u + f with initial data and source supported outside $$\Omega _{\varepsilon }$$ Ω ε ; here, $$\chi _{S}$$ χ S denotes the characteristic function of a set S. We provide the first-order $$\varepsilon $$ ε -corrections with respect to the solutions of the inhomogeneous free wave equation and give space-time estimates on the remainders in the $$L^{\infty }((0,1/\varepsilon ^{\tau }),L^{2}(\mathbb {R}^{3})) $$ L ∞ ( ( 0 , 1 / ε τ ) , L 2 ( R 3 ) ) -norm. Such corrections are explicitly expressed in terms of the eigenvalues and eigenfunctions of the Newton potential operator in $$L^{2}(\Omega )$$ L 2 ( Ω ) and provide an effective dynamics describing a legitimate point scatterer approximation in the time domain.

Suggested Citation

  • Andrea Mantile & Andrea Posilicano, 2024. "The point scatterer approximation for wave dynamics," Partial Differential Equations and Applications, Springer, vol. 5(5), pages 1-30, October.
  • Handle: RePEc:spr:pardea:v:5:y:2024:i:5:d:10.1007_s42985-024-00292-0
    DOI: 10.1007/s42985-024-00292-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-024-00292-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-024-00292-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laetitia Raguin & Olivier Gaiffe & Roland Salut & Jean-Marc Cote & Valérie Soumann & Vincent Laude & Abdelkrim Khelif & Sarah Benchabane, 2019. "Dipole states and coherent interaction in surface-acoustic-wave coupled phononic resonators," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik D. Bühler & Matthias Weiß & Antonio Crespo-Poveda & Emeline D. S. Nysten & Jonathan J. Finley & Kai Müller & Paulo V. Santos & Mauricio M. Lima & Hubert J. Krenner, 2022. "On-chip generation and dynamic piezo-optomechanical rotation of single photons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:5:y:2024:i:5:d:10.1007_s42985-024-00292-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.