IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v4y2023i4d10.1007_s42985-023-00250-2.html
   My bibliography  Save this article

Sparse grid time-discontinuous Galerkin method with streamline diffusion for transport equations

Author

Listed:
  • Andreas Zeiser

    (HTW Berlin)

Abstract

High-dimensional transport equations frequently occur in science and engineering. Computing their numerical solution, however, is challenging due to its high dimensionality. In this work we develop an algorithm to efficiently solve the transport equation in moderately complex geometrical domains using a Galerkin method stabilized by streamline diffusion. The ansatz spaces are a tensor product of a sparse grid in space and discontinuous piecewise polynomials in time. Here, the sparse grid is constructed upon nested multilevel finite element spaces to provide geometric flexibility. This results in an implicit time-stepping scheme which we prove to be stable and convergent. If the solution has additional mixed regularity, the convergence of a 2d-dimensional problem equals that of a d-dimensional one up to logarithmic factors. For the implementation, we rely on the representation of sparse grids as a sum of anisotropic full grid spaces. This enables us to store the functions and to carry out the computations on a sequence regular full grids exploiting the tensor product structure of the ansatz spaces. In this way existing finite element libraries and GPU acceleration can be used. The combination technique is used as a preconditioner for an iterative scheme to solve the transport equation on the sequence of time strips. Numerical tests show that the method works well for problems in up to six dimensions. Finally, the method is also used as a building block to solve nonlinear Vlasov-Poisson equations.

Suggested Citation

  • Andreas Zeiser, 2023. "Sparse grid time-discontinuous Galerkin method with streamline diffusion for transport equations," Partial Differential Equations and Applications, Springer, vol. 4(4), pages 1-25, August.
  • Handle: RePEc:spr:pardea:v:4:y:2023:i:4:d:10.1007_s42985-023-00250-2
    DOI: 10.1007/s42985-023-00250-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-023-00250-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-023-00250-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:4:y:2023:i:4:d:10.1007_s42985-023-00250-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.