IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v3y2022i6d10.1007_s42985-022-00206-y.html
   My bibliography  Save this article

Large time asymptotics for the fractional modified Korteweg-de Vries equation with $$\alpha \in \left( 2,4\right) $$ α ∈ 2 , 4

Author

Listed:
  • Nakao Hayashi

    (Tohoku University)

  • Pavel I. Naumkin

    (UNAM Campus Morelia)

  • Isahi Sánchez-Suárez

    (Universidad Politécnica de Uruapan)

Abstract

We study the large time asymptotics for solutions to the Cauchy problem for the fractional modified Korteweg-de Vries equation $$\begin{aligned} \left\{ \begin{array}{c} \partial _{t}w+\frac{1}{\alpha }\left| \partial _{x}\right| ^{\alpha -1}\partial _{x}w=\partial _{x}\left( w^{3}\right) ,\,t>0,\, x\in {\mathbb {R}}\mathbf {,} \\ w\left( 0,x\right) =w_{0}\left( x\right) ,\,x\in {\mathbb {R}}\mathbf {,} \end{array} \right. \end{aligned}$$ ∂ t w + 1 α ∂ x α - 1 ∂ x w = ∂ x w 3 , t > 0 , x ∈ R , w 0 , x = w 0 x , x ∈ R , where $$\alpha \in \left( 2,4\right) $$ α ∈ 2 , 4 , and $$\left| \partial _{x}\right| ^{\alpha }={\mathcal {F}}^{-1}\left| \xi \right| ^{\alpha }{\mathcal {F}}$$ ∂ x α = F - 1 ξ α F is the fractional derivative . The case of $$\alpha =3$$ α = 3 corresponds to the classical modified KdV equation. In the case of $$\alpha =2$$ α = 2 it is the modified Benjamin-Ono equation. Our aim is to find the large time asymptotic formulas for the solutions of the Cauchy problem for the fractional modified KdV equation. We develop the method based on the factorization techniques which was started in papers Hayashi, N., Naumkin, P.I. (Z. Angew. Math. Phys.) 59, 1002–1028 (2008), Hayashi, N., Naumkin, P.I. (SUT J. Math.) 52, 49–95 (2016) Hayashi, N., Ozawa, T.: (Ann. I.H.P. (Phys. Théor.)) 48, 17-37 (1988), Naumkin, P.I. (J. Differential Equations) 269(7), 5701–5729 (2020). Also we apply the known results on the $$\mathbf {L}^{2}$$ L 2 - boundedness of pseudodifferential operators.

Suggested Citation

  • Nakao Hayashi & Pavel I. Naumkin & Isahi Sánchez-Suárez, 2022. "Large time asymptotics for the fractional modified Korteweg-de Vries equation with $$\alpha \in \left( 2,4\right) $$ α ∈ 2 , 4," Partial Differential Equations and Applications, Springer, vol. 3(6), pages 1-28, December.
  • Handle: RePEc:spr:pardea:v:3:y:2022:i:6:d:10.1007_s42985-022-00206-y
    DOI: 10.1007/s42985-022-00206-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-022-00206-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-022-00206-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Carreño-Bolaños & Nakao Hayashi & Pavel I. Naumkin, 2023. "Asymptotics of solutions for the fractional modified Korteweg–de Vries equation of order $$\alpha \in \left( 2,3\right) $$ α ∈ 2 , 3," Partial Differential Equations and Applications, Springer, vol. 4(4), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:3:y:2022:i:6:d:10.1007_s42985-022-00206-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.