IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v2y2021i2d10.1007_s42985-021-00087-7.html
   My bibliography  Save this article

Diffusive limit of a two-dimensional well-balanced approximation to a kinetic model of chemotaxis

Author

Listed:
  • Gabriella Bretti

    (Istituto per le Applicazioni del Calcolo)

  • Laurent Gosse

    (Istituto per le Applicazioni del Calcolo)

Abstract

A $$(2+2)$$ ( 2 + 2 ) -dimensional kinetic equation, directly inspired by the run-and-tumble modeling of chemotaxis dynamics is studied so as to derive a both “2D well-balanced” and “asymptotic-preserving” numerical approximation. To this end, exact stationary regimes are expressed by means of Laplace transforms of Fourier–Bessel solutions of associated elliptic equations. This yields a scattering S-matrix which permits to formulate a time-marching scheme in the form of a convex combination in kinetic scaling. Then, in the diffusive scaling, an IMEX-type discretization follows, for which the “2D well-balanced property” still holds, while the consistency with the asymptotic drift-diffusion equation is checked. Numerical benchmarks, involving “nonlocal gradients” (or finite sampling radius), carried out in both scalings, assess theoretical findings. Nonlocal gradients appear to inhibit blowup phenomena.

Suggested Citation

  • Gabriella Bretti & Laurent Gosse, 2021. "Diffusive limit of a two-dimensional well-balanced approximation to a kinetic model of chemotaxis," Partial Differential Equations and Applications, Springer, vol. 2(2), pages 1-34, April.
  • Handle: RePEc:spr:pardea:v:2:y:2021:i:2:d:10.1007_s42985-021-00087-7
    DOI: 10.1007/s42985-021-00087-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-021-00087-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-021-00087-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:2:y:2021:i:2:d:10.1007_s42985-021-00087-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.