IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v2y2021i1d10.1007_s42985-020-00067-3.html
   My bibliography  Save this article

Existence, symmetries, and asymptotic properties of global solutions for a fractional diffusion equation with gradient nonlinearity

Author

Listed:
  • Halley Gomes

    (Federal University of Rio Grande do Norte)

  • Arlúcio Viana

    (Federal University of Sergipe)

Abstract

This work gives sufficient conditions to obtain the existence, positivity, symmetry, asymptotic and spatial behaviors of global solutions of a fractional reaction–diffusion equation with power-type and gradient nonlinearities. Eventually, we obtain results of the fractional viscous Hamilton–Jacobi equation.

Suggested Citation

  • Halley Gomes & Arlúcio Viana, 2021. "Existence, symmetries, and asymptotic properties of global solutions for a fractional diffusion equation with gradient nonlinearity," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-30, February.
  • Handle: RePEc:spr:pardea:v:2:y:2021:i:1:d:10.1007_s42985-020-00067-3
    DOI: 10.1007/s42985-020-00067-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-020-00067-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-020-00067-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Metzler, Ralf & Barkai, Eli & Klafter, Joseph, 1999. "Anomalous transport in disordered systems under the influence of external fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 266(1), pages 343-350.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caicedo, Alejandro & Cuevas, Claudio & Mateus, Éder & Viana, Arlúcio, 2021. "Global solutions for a strongly coupled fractional reaction-diffusion system in Marcinkiewicz spaces," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Lin, Guoxing, 2017. "Analyzing signal attenuation in PFG anomalous diffusion via a modified Gaussian phase distribution approximation based on fractal derivative model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 277-288.
    3. Satin, Seema E. & Parvate, Abhay & Gangal, A.D., 2013. "Fokker–Planck equation on fractal curves," Chaos, Solitons & Fractals, Elsevier, vol. 52(C), pages 30-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:2:y:2021:i:1:d:10.1007_s42985-020-00067-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.