Optimizing termination decision for meta-heuristic search techniques that converge to a static objective-value distribution
Author
Abstract
Suggested Citation
DOI: 10.1007/s00291-021-00650-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tuyl, Frank & Gerlach, Richard & Mengersen, Kerrie, 2008. "A Comparison of BayesLaplace, Jeffreys, and Other Priors: The Case of Zero Events," The American Statistician, American Statistical Association, vol. 62, pages 40-44, February.
- Jianzhong Du & Joseph Y.-T. Leung, 1990. "Minimizing Total Tardiness on One Machine is NP-Hard," Mathematics of Operations Research, INFORMS, vol. 15(3), pages 483-495, August.
- Andreas C. Nearchou, 2018. "Multicriteria scheduling optimization using an elitist multiobjective population heuristic: the h-NSDE algorithm," Journal of Heuristics, Springer, vol. 24(6), pages 817-851, December.
- Francisco J. Solis & Roger J.-B. Wets, 1981. "Minimization by Random Search Techniques," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 19-30, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Corominas, Albert, 2023. "On deciding when to stop metaheuristics: Properties, rules and termination conditions," Operations Research Perspectives, Elsevier, vol. 10(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Enrique Gerstl & Gur Mosheiov, 2020. "Single machine scheduling to maximize the number of on-time jobs with generalized due-dates," Journal of Scheduling, Springer, vol. 23(3), pages 289-299, June.
- Shelley D. Dionne & Hiroki Sayama & Francis J. Yammarino, 2019. "Diversity and Social Network Structure in Collective Decision Making: Evolutionary Perspectives with Agent-Based Simulations," Complexity, Hindawi, vol. 2019, pages 1-16, March.
- Ricardo Navarro & Chyon Hae Kim, 2020. "Niching Multimodal Landscapes Faster Yet Effectively: VMO and HillVallEA Benefit Together," Mathematics, MDPI, vol. 8(5), pages 1-37, April.
- C. P. Stephens & W. Baritompa, 1998. "Global Optimization Requires Global Information," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 575-588, March.
- Sesh Murthy & Rama Akkiraju & Richard Goodwin & Pinar Keskinocak & John Rachlin & Frederick Wu & James Yeh & Robert Fuhrer & Santhosh Kumaran & Alok Aggarwal & Martin Sturzenbecker & Ranga Jayaraman &, 1999. "Cooperative Multiobjective Decision Support for the Paper Industry," Interfaces, INFORMS, vol. 29(5), pages 5-30, October.
- Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
- Baruch Mor & Gur Mosheiov & Dvir Shabtay, 2021. "Minimizing the total tardiness and job rejection cost in a proportionate flow shop with generalized due dates," Journal of Scheduling, Springer, vol. 24(6), pages 553-567, December.
- Camila Ramos & Alejandro Cataldo & Juan–Carlos Ferrer, 2020. "Appointment and patient scheduling in chemotherapy: a case study in Chilean hospitals," Annals of Operations Research, Springer, vol. 286(1), pages 411-439, March.
- J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
- Rubing Chen & Jinjiang Yuan, 2019. "Unary NP-hardness of single-machine scheduling to minimize the total tardiness with deadlines," Journal of Scheduling, Springer, vol. 22(5), pages 595-601, October.
- Quang Chieu Ta & Jean-Charles Billaut & Jean-Louis Bouquard, 2018. "Matheuristic algorithms for minimizing total tardiness in the m-machine flow-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 617-628, March.
- Regis, Rommel G., 2010. "Convergence guarantees for generalized adaptive stochastic search methods for continuous global optimization," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1187-1202, December.
- E. A. Tsvetkov & R. A. Krymov, 2022. "Pure Random Search with Virtual Extension of Feasible Region," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 575-595, November.
- Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
- Evgeny Gafarov & Alexander Lazarev & Frank Werner, 2012. "Transforming a pseudo-polynomial algorithm for the single machine total tardiness maximization problem into a polynomial one," Annals of Operations Research, Springer, vol. 196(1), pages 247-261, July.
- C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
- Hvattum, Lars Magnus & Glover, Fred, 2009. "Finding local optima of high-dimensional functions using direct search methods," European Journal of Operational Research, Elsevier, vol. 195(1), pages 31-45, May.
- Maximilian Moser & Nysret Musliu & Andrea Schaerf & Felix Winter, 2022. "Exact and metaheuristic approaches for unrelated parallel machine scheduling," Journal of Scheduling, Springer, vol. 25(5), pages 507-534, October.
- Hongmin Li & Woonghee T. Huh & Matheus C. Sampaio & Naiping Keng, 2021. "Planning Production and Equipment Qualification under High Process Flexibility," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3369-3390, October.
- Rinnooy Kan, A. H. G. & Timmer, G. T., 1985. "Stochastic Global Optimization Methods Part I: Clustering Methods," Econometric Institute Archives 272329, Erasmus University Rotterdam.
More about this item
Keywords
Meta-heuristics; Genetic algorithms; Global optimization; Stopping point; Search algorithms;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:44:y:2022:i:1:d:10.1007_s00291-021-00650-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.