IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v61y2024i4d10.1007_s12597-024-00758-0.html
   My bibliography  Save this article

New strategy for anti-loop formulations

Author

Listed:
  • Jose Manuel García

    (University of Seville)

Abstract

This paper presents a strategy based on binary labelling of nodes for the creation of anti-loop formulations from existing strategies. This strategy prevents by default the formation of odd cycles, therefore it can have important role in iterative procedures based on generating subtour elimination constraints. It can also be used to modify the classic strategies used in problems associated to graphs. In this paper we focus on this last application. The behavior of this strategy is analyzed with two problems associated with graphs, the Asymmetric Traveling Salesman Problem (ATSP) and the Steiner Problem, where two configurations that modify the Miller-Tucking-Zemlig proposal to avoid cycles are compared. The experimental analysis shows that this strategy keep a good convergence, highlighting its use for the Steiner problem.

Suggested Citation

  • Jose Manuel García, 2024. "New strategy for anti-loop formulations," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 2346-2359, December.
  • Handle: RePEc:spr:opsear:v:61:y:2024:i:4:d:10.1007_s12597-024-00758-0
    DOI: 10.1007/s12597-024-00758-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-024-00758-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-024-00758-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanif D. Sherali & Patrick J. Driscoll, 2002. "On Tightening the Relaxations of Miller-Tucker-Zemlin Formulations for Asymmetric Traveling Salesman Problems," Operations Research, INFORMS, vol. 50(4), pages 656-669, August.
    2. Maichel M. Aguayo & Subhash C. Sarin & Hanif D. Sherali, 2018. "Solving the single and multiple asymmetric Traveling Salesmen Problems by generating subtour elimination constraints from integer solutions," IISE Transactions, Taylor & Francis Journals, vol. 50(1), pages 45-53, January.
    3. Bartosz Sawik & Adrian Serrano-Hernandez & Alvaro Muro & Javier Faulin, 2022. "Multi-Criteria Simulation-Optimization Analysis of Usage of Automated Parcel Lockers: A Practical Approach," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    4. Ulrich Pferschy & Rostislav Staněk, 2017. "Generating subtour elimination constraints for the TSP from pure integer solutions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 231-260, March.
    5. Harlan Crowder & Ellis L. Johnson & Manfred Padberg, 1983. "Solving Large-Scale Zero-One Linear Programming Problems," Operations Research, INFORMS, vol. 31(5), pages 803-834, October.
    6. Gouveia, Luis & Pires, Jose Manuel, 1999. "The asymmetric travelling salesman problem and a reformulation of the Miller-Tucker-Zemlin constraints," European Journal of Operational Research, Elsevier, vol. 112(1), pages 134-146, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akgün, Ibrahim & Tansel, Barbaros Ç., 2011. "New formulations of the Hop-Constrained Minimum Spanning Tree problem via Miller-Tucker-Zemlin constraints," European Journal of Operational Research, Elsevier, vol. 212(2), pages 263-276, July.
    2. R. Lougee-Heimer & W. Adams, 2005. "A Conditional Logic Approach for Strengthening Mixed 0-1 Linear Programs," Annals of Operations Research, Springer, vol. 139(1), pages 289-320, October.
    3. Duygu Pamukcu & Burcu Balcik, 2020. "A multi-cover routing problem for planning rapid needs assessment under different information-sharing settings," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 1-42, March.
    4. Balma, Ali & Salem, Safa Ben & Mrad, Mehdi & Ladhari, Talel, 2018. "Strong multi-commodity flow formulations for the asymmetric traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 72-79.
    5. Khachai, Daniil & Sadykov, Ruslan & Battaia, Olga & Khachay, Michael, 2023. "Precedence constrained generalized traveling salesman problem: Polyhedral study, formulations, and branch-and-cut algorithm," European Journal of Operational Research, Elsevier, vol. 309(2), pages 488-505.
    6. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    7. Wei-Kun Chen & Liang Chen & Mu-Ming Yang & Yu-Hong Dai, 2018. "Generalized coefficient strengthening cuts for mixed integer programming," Journal of Global Optimization, Springer, vol. 70(1), pages 289-306, January.
    8. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    9. Brian Lunday & Hanif Sherali & Kevin Lunday, 2012. "The coastal seaspace patrol sector design and allocation problem," Computational Management Science, Springer, vol. 9(4), pages 483-514, November.
    10. Dragoš Cvetković & Mirjana Čangalović & Zorica Dražić & Vera Kovačević-Vujčić, 2018. "Complexity indices for the traveling salesman problem based on short edge subgraphs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 759-769, September.
    11. Alves, Maria Joao & Climaco, Joao, 1999. "Using cutting planes in an interactive reference point approach for multiobjective integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 117(3), pages 565-577, September.
    12. Srinivasa, Anand V. & Wilhelm, Wilbert E., 1997. "A procedure for optimizing tactical response in oil spill clean up operations," European Journal of Operational Research, Elsevier, vol. 102(3), pages 554-574, November.
    13. Xiaoyi Gu & Santanu S. Dey & Jean-Philippe P. Richard, 2024. "Solving Sparse Separable Bilinear Programs Using Lifted Bilinear Cover Inequalities," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 884-899, May.
    14. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    15. Pourbabai, B. & Ashayeri, J. & Van Wassenhove, L.N., 1992. "Strategic marketing, production, and distribution planning of an integrated manufacturing system," Other publications TiSEM 16c2bacb-2c2b-427e-b429-c, Tilburg University, School of Economics and Management.
    16. Moeini, Asghar., 2017. "Identification of unidentified equality constraints for integer programming problems," European Journal of Operational Research, Elsevier, vol. 260(2), pages 460-467.
    17. B. Dietrich & L. Escudero & A. Garín & G. Pérez, 1993. "O(n) Procedures for identifying maximal cliques and non-dominated extensions of consecutive minimal covers and alternates," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 1(1), pages 139-160, December.
    18. Amitabh Basu & Pierre Bonami & Gérard Cornuéjols & François Margot, 2011. "Experiments with Two-Row Cuts from Degenerate Tableaux," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 578-590, November.
    19. Eva K. Lee, 2004. "Generating Cutting Planes for Mixed Integer Programming Problems in a Parallel Computing Environment," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 3-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:61:y:2024:i:4:d:10.1007_s12597-024-00758-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.