IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v56y2019i3d10.1007_s12597-019-00387-y.html
   My bibliography  Save this article

Multi-objective multi-model assembly line balancing problem: a quantitative study in engine manufacturing industry

Author

Listed:
  • Abolfazl Jafari Asl

    (Urmia University of Technology)

  • Maghsud Solimanpur

    (Urmia University)

  • Ravi Shankar

    (Indian Institute of Technology Delhi)

Abstract

This paper deals with multi-model assembly line balancing problem (MuMALBP). In multi-model assembly lines several products are produced in separate batches on a single assembly line. Despite their popular applications, these kinds of lines have been rarely studied in the literature. In this paper, a multi-objective mixed-integer linear programing model is proposed for balancing multi-model assembly lines. Three objectives are simultaneously considered in the proposed model. These are: (1) minimizing cycle time for each model (2) maximizing number of common tasks assigned to the same workstations, and (3) maximizing level of workload distribution smoothness between workstations. Performance of the proposed model is empirically investigated in a real world engine assembly line. After applying the proposed model, possible minimum cycle time is attained for each model. All common tasks are assigned to the same workstations and a highest possible level of workload distribution smoothness is achieved. It is shown that the best compromise solution has led to the best value of the first and second objective functions with a slight distance from the best value of third one.

Suggested Citation

  • Abolfazl Jafari Asl & Maghsud Solimanpur & Ravi Shankar, 2019. "Multi-objective multi-model assembly line balancing problem: a quantitative study in engine manufacturing industry," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 603-627, September.
  • Handle: RePEc:spr:opsear:v:56:y:2019:i:3:d:10.1007_s12597-019-00387-y
    DOI: 10.1007/s12597-019-00387-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-019-00387-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-019-00387-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pape, Tom, 2015. "Heuristics and lower bounds for the simple assembly line balancing problem type 1: Overview, computational tests and improvements," European Journal of Operational Research, Elsevier, vol. 240(1), pages 32-42.
    2. Golle, Uli & Rothlauf, Franz & Boysen, Nils, 2014. "Car sequencing versus mixed-model sequencing: A computational study," European Journal of Operational Research, Elsevier, vol. 237(1), pages 50-61.
    3. Nick T. Thomopoulos, 1967. "Line Balancing-Sequencing for Mixed-Model Assembly," Management Science, INFORMS, vol. 14(2), pages 59-75, October.
    4. Kara, Yakup & Paksoy, Turan & Chang, Ching-Ter, 2009. "Binary fuzzy goal programming approach to single model straight and U-shaped assembly line balancing," European Journal of Operational Research, Elsevier, vol. 195(2), pages 335-347, June.
    5. Mahdi Zarghami & Ahmad Abrishamchi & Reza Ardakanian, 2008. "Multi-criteria Decision Making for Integrated Urban Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 1017-1029, August.
    6. Jordi Pereira, 2018. "Modelling and solving a cost-oriented resource-constrained multi-model assembly line balancing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 56(11), pages 3994-4016, June.
    7. Zhexuan Zhou & Yajie Dou & Jianbin Sun & Jiang Jiang & Yuejin Tan, 2017. "Sustainable Production Line Evaluation Based on Evidential Reasoning," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    8. M. S. Osman & O. E. Emam & M. A. El Sayed, 2017. "Stochastic Fuzzy Multi-level Multi-objective Fractional Programming Problem: A FGP Approach," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 816-840, December.
    9. Boysen, Nils & Scholl, Armin & Wopperer, Nico, 2012. "Resequencing of mixed-model assembly lines: Survey and research agenda," European Journal of Operational Research, Elsevier, vol. 216(3), pages 594-604.
    10. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    11. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    12. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    13. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    14. Hamta, Nima & Fatemi Ghomi, S.M.T. & Jolai, F. & Akbarpour Shirazi, M., 2013. "A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect," International Journal of Production Economics, Elsevier, vol. 141(1), pages 99-111.
    15. R Pastor & C Andrés & A Duran & M Pérez, 2002. "Tabu search algorithms for an industrial multi-product and multi-objective assembly line balancing problem, with reduction of the task dispersion," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(12), pages 1317-1323, December.
    16. Kabir, Md. Alamgir & Tabucanon, Mario T., 1995. "Batch-model assembly line balancing: A multiattribute decision making approach," International Journal of Production Economics, Elsevier, vol. 41(1-3), pages 193-201, October.
    17. Emde, Simon & Boysen, Nils & Scholl, Armin, 2010. "Balancing mixed-model assembly lines: a computational evaluation of objectives to smoothen workload," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79442, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. van Zante-de Fokkert, Jannet I. & de Kok, Ton G., 1997. "The mixed and multi model line balancing problem: a comparison," European Journal of Operational Research, Elsevier, vol. 100(3), pages 399-412, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Tanhaie & M. Rabbani & N. Manavizadeh, 2020. "Applying available-to-promise (ATP) concept in mixed-model assembly line sequencing problems in a Make-To-Order (MTO) environment: problem extension, model formulation and Lagrangian relaxation algori," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 320-346, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    2. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    3. Ibrahim Kucukkoc & Kadir Buyukozkan & Sule Itir Satoglu & David Z. Zhang, 2019. "A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2913-2925, December.
    4. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    5. Kucukkoc, Ibrahim & Li, Zixiang & Karaoglan, Aslan D. & Zhang, David Z., 2018. "Balancing of mixed-model two-sided assembly lines with underground workstations: A mathematical model and ant colony optimization algorithm," International Journal of Production Economics, Elsevier, vol. 205(C), pages 228-243.
    6. Sternatz, Johannes, 2014. "Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry," European Journal of Operational Research, Elsevier, vol. 235(3), pages 740-754.
    7. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    8. Olcay Polat & Can B. Kalayci & Özcan Mutlu & Surendra M. Gupta, 2016. "A two-phase variable neighbourhood search algorithm for assembly line worker assignment and balancing problem type-II: an industrial case study," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 722-741, February.
    9. M. H. Alavidoost & M. H. Fazel Zarandi & Mosahar Tarimoradi & Yaser Nemati, 2017. "Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 313-336, February.
    10. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    11. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    12. Lopes, Thiago Cantos & Pastre, Giuliano Vidal & Michels, Adalberto Sato & Magatão, Leandro, 2020. "Flexible multi-manned assembly line balancing problem: Model, heuristic procedure, and lower bounds for line length minimization," Omega, Elsevier, vol. 95(C).
    13. Otto, Alena & Li, Xiyu, 2020. "Product sequencing in multiple-piece-flow assembly lines," Omega, Elsevier, vol. 91(C).
    14. Lopes, Thiago Cantos & Michels, Adalberto Sato & Sikora, Celso Gustavo Stall & Molina, Rafael Gobbi & Magatão, Leandro, 2018. "Balancing and cyclically sequencing synchronous, asynchronous, and hybrid unpaced assembly lines," International Journal of Production Economics, Elsevier, vol. 203(C), pages 216-224.
    15. Moreira, Mayron César O. & Costa, Alysson M., 2013. "Hybrid heuristics for planning job rotation schedules in assembly lines with heterogeneous workers," International Journal of Production Economics, Elsevier, vol. 141(2), pages 552-560.
    16. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    17. Chica, Manuel & Bautista, Joaquín & Cordón, Óscar & Damas, Sergio, 2016. "A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand," Omega, Elsevier, vol. 58(C), pages 55-68.
    18. Tiacci, Lorenzo, 2015. "Simultaneous balancing and buffer allocation decisions for the design of mixed-model assembly lines with parallel workstations and stochastic task times," International Journal of Production Economics, Elsevier, vol. 162(C), pages 201-215.
    19. Jietao Dong & Linxuan Zhang & Tianyuan Xiao, 2018. "A hybrid PSO/SA algorithm for bi-criteria stochastic line balancing with flexible task times and zoning constraints," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 737-751, April.
    20. Minghai Yuan & Hongyan Yu & Jinting Huang & Aimin Ji, 2019. "Reconfigurable assembly line balancing for cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2391-2405, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:56:y:2019:i:3:d:10.1007_s12597-019-00387-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.