IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i1d10.1007_s12351-020-00563-9.html
   My bibliography  Save this article

Integer and constraint programming model formulations for flight-gate assignment problem

Author

Listed:
  • M. Arslan Ornek

    (Yasar University)

  • Cemalettin Ozturk

    (Raytheon Technologies, United Technologies Research Center Ireland)

  • Ipek Sugut

    (Turkish Airlines)

Abstract

Flight-gate assignment problems are complex real world problems involving different constraints. Some of these constraints include plane-gate eligibility, assigning planes of the same airline and planes getting service from the same ground handling companies to adjacent gates, buffers for changes in flight schedules, night stand flights, priority of some gates over others, and so on. In literature there are numerous models to solve this highly complicated problem and tackle its complexity. In this study, first, we propose two different integer programming models, namely, timetabling and assignment based models, and then a scheduling based constraint programming model to solve the problem to optimality. These models prove to be highly efficient in that the computational times are quite short. We also present the results for one day operation of an airport using real data. Finally, we present our conclusions based on our study along with the possible further research.

Suggested Citation

  • M. Arslan Ornek & Cemalettin Ozturk & Ipek Sugut, 2022. "Integer and constraint programming model formulations for flight-gate assignment problem," Operational Research, Springer, vol. 22(1), pages 135-163, March.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:1:d:10.1007_s12351-020-00563-9
    DOI: 10.1007/s12351-020-00563-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-020-00563-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-020-00563-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Shangyao & Tang, Ching-Hui, 2007. "A heuristic approach for airport gate assignments for stochastic flight delays," European Journal of Operational Research, Elsevier, vol. 180(2), pages 547-567, July.
    2. Cemalettin Öztürk & F. Zeynep Sargut & M. Arslan Örnek & Deniz Türsel Eliiyi, 2017. "Optimisation and heuristic approaches for assigning inbound containers to outbound carriers," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(7), pages 825-836, October.
    3. Ornek, M. Arslan & Ozturk, Cemalettin & Sugut, Ipek, 2019. "Model-based heuristic for counter assignment problem with operational constrains: A case study," Journal of Air Transport Management, Elsevier, vol. 77(C), pages 57-64.
    4. A Bolat, 1999. "Assigning arriving flights at an airport to the available gates," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(1), pages 23-34, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şeker, Merve & Noyan, Nilay, 2012. "Stochastic optimization models for the airport gate assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 438-459.
    2. Amadeo Ascó, 2016. "An Analysis of Robustness Approaches for the Airport Baggage Sorting Station Assignment Problem," Journal of Optimization, Hindawi, vol. 2016, pages 1-19, September.
    3. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2022. "Learning-driven feasible and infeasible tabu search for airport gate assignment," European Journal of Operational Research, Elsevier, vol. 302(1), pages 172-186.
    4. Zhang, Dong & Klabjan, Diego, 2017. "Optimization for gate re-assignment," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 260-284.
    5. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    6. Tang, Ching-Hui & Wang, Wei-Chung, 2013. "Airport gate assignments for airline-specific gates," Journal of Air Transport Management, Elsevier, vol. 30(C), pages 10-16.
    7. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2005. "Flight gate scheduling: State-of-the-art and recent developments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 584, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    9. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    10. Pternea, Moschoula & Haghani, Ali, 2019. "An aircraft-to-gate reassignment framework for dealing with schedule disruptions," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 116-132.
    11. Xu, Liang & Zhang, Chao & Xiao, Feng & Wang, Fan, 2017. "A robust approach to airport gate assignment with a solution-dependent uncertainty budget," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 458-478.
    12. Yan, Shangyao & Tang, Ching-Hui, 2007. "A heuristic approach for airport gate assignments for stochastic flight delays," European Journal of Operational Research, Elsevier, vol. 180(2), pages 547-567, July.
    13. Skorupski, Jacek & Żarów, Piotr, 2021. "Dynamic management of aircraft stand allocation," Journal of Air Transport Management, Elsevier, vol. 90(C).
    14. Bert Dijk & Bruno F. Santos & Joao P. Pita, 2019. "The recoverable robust stand allocation problem: a GRU airport case study," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 615-639, September.
    15. Yan, Shangyao & Shieh, Chi-Yuan & Chen, Miawjane, 2002. "A simulation framework for evaluating airport gate assignments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(10), pages 885-898, December.
    16. Guépet, J. & Acuna-Agost, R. & Briant, O. & Gayon, J.P., 2015. "Exact and heuristic approaches to the airport stand allocation problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 597-608.
    17. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2007. "Flight gate scheduling: State-of-the-art and recent developments," Omega, Elsevier, vol. 35(3), pages 326-334, June.
    18. S Yan & C-H Tang & C-H Chen, 2008. "Reassignments of common-use check-in counters following airport incidents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1100-1108, August.
    19. Shangyao Yan & Chung-Cheng Lu & Jun-Hsiao Hsieh & Han-Chun Lin, 2019. "A Dynamic and Flexible Berth Allocation Model with Stochastic Vessel Arrival Times," Networks and Spatial Economics, Springer, vol. 19(3), pages 903-927, September.
    20. Abdelghany, Ahmed & Abdelghany, Khaled & Narasimhan, Ram, 2006. "Scheduling baggage-handling facilities in congested airports," Journal of Air Transport Management, Elsevier, vol. 12(2), pages 76-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:1:d:10.1007_s12351-020-00563-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.