IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v94y2018i1d10.1007_s11069-018-3376-y.html
   My bibliography  Save this article

Dynamics of an outburst flood originating from a small and high-altitude glacier in the Arid Andes of Chile

Author

Listed:
  • Pablo Iribarren Anacona

    (Universidad Austral de Chile)

  • Kevin Norton

    (Victoria University of Wellington)

  • Andrew Mackintosh

    (Victoria University of Wellington
    Victoria University of Wellington)

  • Fernando Escobar

    (Dirección General de Aguas)

  • Simon Allen

    (University of Zurich)

  • Bruno Mazzorana

    (Universidad Austral de Chile
    Millennium Nucleus CYCLO, The Seismic Cycle Along Subduction Zones)

  • Marius Schaefer

    (Universidad Austral de Chile)

Abstract

Glacial lake outburst floods (GLOFs) are common where highly dynamic temperate glaciers exist, since seasonal changes in ice-conduit dynamics can start rapid lake drainages. Lakes dammed by cold-based glaciers, however, are less common and GLOFs from these glaciers have been rarely reported. Understanding both the origin and the failure mechanisms of lakes dammed by cold-based glaciers and subsequent flood processes is essential for territorial planning. We study a remarkable GLOF triggered by the failure of a subglacial lake in the Manflas Valley, Arid Andes of Chile, in 1985 providing insights into the lake’s origin, clarifying the failure mechanism and modelling the GLOF event-related dynamics. To identify the factors that contributed to the lake formation and failure, we analysed remotely sensed images, meteorological and topographic data. The GLOF dynamics were reconstructed using empirical (LAHARZ and MSF) and physical models (RAMMS). The obtained results were compared with field data of flow extent, depth and velocity. We show that the failed lake (4 × 106 m3) formed in a low-slope (≤ 10°) area and that extreme (≥ 90th percentile) annual precipitation before the GLOF contributed to the lake filling and probably to the dam collapse. The lake likely drained rapidly after mechanical failure of the ice-dam producing a high energy sediment-laden flow. We show the challenges of modelling large flows over long distances (dozens of kilometres) especially when flows change between Newtonian and Non-Newtonian phases. A GLOF can still endanger the Manflas Valley since a remnant of the lake of about 220.000 m3 exists and economic assets are located along the1985 GLOF path.

Suggested Citation

  • Pablo Iribarren Anacona & Kevin Norton & Andrew Mackintosh & Fernando Escobar & Simon Allen & Bruno Mazzorana & Marius Schaefer, 2018. "Dynamics of an outburst flood originating from a small and high-altitude glacier in the Arid Andes of Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 93-119, October.
  • Handle: RePEc:spr:nathaz:v:94:y:2018:i:1:d:10.1007_s11069-018-3376-y
    DOI: 10.1007/s11069-018-3376-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3376-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3376-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Dorta & G. Toyos & C. Oppenheimer & M. Pareschi & R. Sulpizio & G. Zanchetta, 2007. "Empirical modelling of the May 1998 small debris flows in Sarno (Italy) using LAHARZ," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(2), pages 381-396, February.
    2. Angelo Castruccio & Jorge Clavero, 2015. "Lahar simulation at active volcanoes of the Southern Andes: implications for hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 693-716, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Procter & Shane Cronin & Thomas Platz & Abani Patra & Keith Dalbey & Michael Sheridan & Vince Neall, 2010. "Mapping block-and-ash flow hazards based on Titan 2D simulations: a case study from Mt. Taranaki, NZ," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 483-501, June.
    2. Fabian Rodriguez & Theofilos Toulkeridis & Washington Sandoval & Oswaldo Padilla & Fernando Mato, 2017. "Economic risk assessment of Cotopaxi volcano, Ecuador, in case of a future lahar emplacement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 605-618, January.
    3. Angelo Castruccio & Jorge Clavero, 2015. "Lahar simulation at active volcanoes of the Southern Andes: implications for hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 693-716, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:94:y:2018:i:1:d:10.1007_s11069-018-3376-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.