IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v93y2018i2d10.1007_s11069-018-3334-8.html
   My bibliography  Save this article

Volume estimation and stage division of the Mahu landslide in Sichuan Province, China

Author

Listed:
  • Yulong Cui

    (Anhui University of Science and Technology
    Sichuan University)

  • Jianhui Deng

    (Sichuan University)

  • Chong Xu

    (Earthquake Administration China)

Abstract

The Mahu lake, the third deepest lake in China, is located on the west bank of the Jinsha River in Leibo county, Sichuan Province. It is a dammed lake created by an old landslide on the ancient Huanglang river, a tributary on the west bank of the Jinsha River. Previous studies (Wang and Lu in J Mt Res S1:44–47, 2000) suggested that this landslide was caused by an earthquake approximately 372 ka (Middle Pleistocene), during which a few hundreds of million cubic meters of debris were deposited between 1177 and 900 m a.s.l. (above sea level), covering an area of around 15 km2. Our further investigations, including geodetic survey, borehole drilling, and field reconnaissance, combining with five chronological data, have made some new discoveries at this site. First, the toe of the landslide extends from 900 m a.s.l. down to 320 m a.s.l., i.e., the local bed elevation of the contemporary Jinsha River. Second, the area of the landslide deposits is 17.3 km2 with a volume of 2.38 km3, much larger than the previous estimation. Thus, it should be one of the largest known landslides in China. And the lower elevation of the landslide’s toe also rules out the possibility that it is a hanging valley on the ancient Huanglang river. Our work suggests that this landslide was created by five events according to the overlapping characteristics of the deposits and five chronological data, which are old than 52,600 years, old than 16,000 years, old than 15,500 years, 5800 years, and old than 4200 years, respectively.

Suggested Citation

  • Yulong Cui & Jianhui Deng & Chong Xu, 2018. "Volume estimation and stage division of the Mahu landslide in Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 941-955, September.
  • Handle: RePEc:spr:nathaz:v:93:y:2018:i:2:d:10.1007_s11069-018-3334-8
    DOI: 10.1007/s11069-018-3334-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3334-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3334-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Song & Yunsheng Wang & Yuchao Zhao & Zhuolin Xiao & Zhuo Feng & Shicheng Liu & Tao Tang, 2024. "Distribution and Stabilization Mechanisms of Stable Landslide Dams," Sustainability, MDPI, vol. 16(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:93:y:2018:i:2:d:10.1007_s11069-018-3334-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.