IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v93y2018i2d10.1007_s11069-018-3319-7.html
   My bibliography  Save this article

Earthquake damage estimations of Byblos potable water network

Author

Listed:
  • Nisrine Makhoul

    (University of Balamand – Al Kurah)

  • Christopher Navarro

    (University of Illinois at Urbana–Champaign)

  • Jong Lee

    (University of Illinois at Urbana–Champaign)

Abstract

The old potable water network in Byblos city is provided mainly from Ibrahim River nearby. Located in a seismic region, the aging network needs to tolerate seismic threats; thus, damage to the potable water network needs to be assessed. Therefore, first, enhancing infrastructure resilience is briefly discussed, noting briefly the need to bridge specifically between heritage risk management and engineering. Second, Byblos potable water network, seismicity, and geology are detailed. Third, the potable water network damage assessment methodology is presented. It encompasses hazard assessment, network inventory, damage functions, and model development. Data and maps are prepared using the Geographic Information System and then modeled in Ergo platform to obtain the damage to buried pipelines in the event of likely earthquake scenarios. Ergo is updated to consider recommended ground motion prediction equations (GMPEs) for the Middle East region, to consider amplification of the peak ground velocity in hazard maps due to different soil types, and to consider adequate fragility functions. Moreover, different Byblos geotechnical maps, landslide hazard, and liquefaction are investigated and embedded. Damage results to pipelines are dependent on the hazard maps obtained using different GMPEs and geotechnical maps. Asbestos cement pipelines will be most damaged, followed by polyethylene and then by ductile iron. Finally, recommendations are offered to consider an improved sustainable rehabilitation solution. The study provides a better understanding of Byblos potable water network and allows the establishment of a sustainable and resilience-to-earthquake preparedness strategy and recovery plan.

Suggested Citation

  • Nisrine Makhoul & Christopher Navarro & Jong Lee, 2018. "Earthquake damage estimations of Byblos potable water network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 627-659, September.
  • Handle: RePEc:spr:nathaz:v:93:y:2018:i:2:d:10.1007_s11069-018-3319-7
    DOI: 10.1007/s11069-018-3319-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3319-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3319-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanpeng Ding & Zhijian Wu & Beilei Zhan & Jian Liu & Jun Bi, 2023. "Analysis of seismic damage of a highway bridge during the 2021 Ms 7.4 earthquake in Maduo County, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2419-2434, July.
    2. Sungsik Yoon & Young-Joo Lee & Hyung-Jo Jung, 2021. "Flow-based seismic risk assessment of a water transmission network employing probabilistic seismic hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1231-1254, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:93:y:2018:i:2:d:10.1007_s11069-018-3319-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.