IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v93y2018i1d10.1007_s11069-018-3303-2.html
   My bibliography  Save this article

Two precautions of entropy-weighting model in drought-risk assessment

Author

Listed:
  • Fanghui Yi

    (Wuhan University)

  • Chen Li

    (Wuhan University)

  • Yan Feng

    (Nanchang University
    Ministry of Education)

Abstract

Two disadvantages of the entropy-weighting model (EWM) in drought-risk assessment are presented through two typical examples in this paper. (1) For distortion in the normalization process, entropy defined by EWM cannot represent the indicator’s dipartite degree correctly when too many zero values exist in the observation data. (2) Given that EWM neglects the indicator’s practical significance in drought-risk assessment, the indicator’s dipartite degree cannot correctly represent its importance when observation data are concentrated in the worst category. These two problems lead to unjustified drought-risk assessment results. Therefore, the features of observation data should be checked before weighting. If the indicator’s observation values are concentrated in the worst domain or numerous zero values exist, then EWM should be applied cautiously.

Suggested Citation

  • Fanghui Yi & Chen Li & Yan Feng, 2018. "Two precautions of entropy-weighting model in drought-risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 339-347, August.
  • Handle: RePEc:spr:nathaz:v:93:y:2018:i:1:d:10.1007_s11069-018-3303-2
    DOI: 10.1007/s11069-018-3303-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3303-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3303-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xiaozhan, 2004. "A note on the subjective and objective integrated approach to determine attribute weights," European Journal of Operational Research, Elsevier, vol. 156(2), pages 530-532, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengyu Chen, 2019. "A Novel Coordinated TOPSIS Based on Coefficient of Variation," Mathematics, MDPI, vol. 7(7), pages 1-17, July.
    2. Yu Liu & Bo Li & Chuanping Wu & Baohui Chen & Tejun Zhou, 2021. "Risk warning technology for the whole process of overhead transmission line trip caused by wildfire," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 195-212, May.
    3. Wentong Yang & Liyuan Zhang & Chunlei Liang, 2023. "Agricultural drought disaster risk assessment in Shandong Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1515-1534, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    2. Wang, Qi & Wu, Chong & Sun, Yang, 2015. "Evaluating corporate social responsibility of airlines using entropy weight and grey relation analysis," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 55-62.
    3. Bruno Ricca & Massimiliano Ferrara & Salvatore Loprevite, 2023. "Searching for an effective accounting-based score of firm performance: a comparative study between different synthesis techniques," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3575-3602, August.
    4. Yang, Guo-liang & Yang, Jian-Bo & Xu, Dong-Ling & Khoveyni, Mohammad, 2017. "A three-stage hybrid approach for weight assignment in MADM," Omega, Elsevier, vol. 71(C), pages 93-105.
    5. Renaud, Jean & Levrat, Eric & Fonteix, Christian, 2008. "Weights determination of OWA operators by parametric identification," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(5), pages 499-511.
    6. Rađenović Žarko & Veselinović Ivana, 2017. "Integrated AHP-TOPSIS Method for the Assessment of Health Management Information Systems Efficiency," Economic Themes, Sciendo, vol. 55(1), pages 121-142, March.
    7. Lianmeng Jiao & Quan Pan & Yan Liang & Xiaoxue Feng & Feng Yang, 2016. "Combining sources of evidence with reliability and importance for decision making," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 87-106, March.
    8. Donald Ukpanyang & Julio Terrados-Cepeda & Manuel Jesus Hermoso-Orzaez, 2022. "Multi-Criteria Selection of Waste-to-Energy Technologies for Slum/Informal Settlements Using the PROMETHEE Technique: A Case Study of the Greater Karu Urban Area in Nigeria," Energies, MDPI, vol. 15(10), pages 1-26, May.
    9. Zhiming Li & Zhengxi Fan & Shiguang Shen, 2018. "Urban Green Space Suitability Evaluation Based on the AHP-CV Combined Weight Method: A Case Study of Fuping County, China," Sustainability, MDPI, vol. 10(8), pages 1-15, July.
    10. Ewa Roszkowska, 2020. "The extention rank ordering criteria weighting methods in fuzzy enviroment," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 91-114.
    11. Renaud, J. & Thibault, J. & Lanouette, R. & Kiss, L.N. & Zaras, K. & Fonteix, C., 2007. "Comparison of two multicriteria decision aid methods: Net Flow and Rough Set Methods in a high yield pulping process," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1418-1432, March.
    12. Vera Shanshan Lin & Yuan Qin & Tianyu Ying & Shujie Shen & Guangming Lyu, 2022. "Night-time economy vitality index: Framework and evidence," Tourism Economics, , vol. 28(3), pages 665-691, May.
    13. Dongye Sun & Yuanhua Jia & Lingqiao Qin & Yang Yang & Juyong Zhang, 2018. "A Variance Maximization Based Weight Optimization Method for Railway Transportation Safety Performance Measurement," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    14. Linglong Chen & Lan Ma & Jiamen Jiji & Qingqi Kong & Zizhao Ni & Lin Yan & Chengzhong Pan, 2022. "River Ecosystem Health Assessment Using a Combination Weighting Method: A Case Study of Beijing Section of Yongding River in China," IJERPH, MDPI, vol. 19(21), pages 1-14, November.
    15. Chao Fu & Dong-Ling Xu, 2016. "Determining attribute weights to improve solution reliability and its application to selecting leading industries," Annals of Operations Research, Springer, vol. 245(1), pages 401-426, October.
    16. Hao Guo & Yaoyao Wu & Yanrui Shang & Hao Yu & Jing’ai Wang, 2019. "Quantifying Farmers’ Initiatives and Capacity to Cope with Drought: A Case Study of Xinghe County in Semi-Arid China," Sustainability, MDPI, vol. 11(7), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:93:y:2018:i:1:d:10.1007_s11069-018-3303-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.