IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v92y2018i3d10.1007_s11069-018-3272-5.html
   My bibliography  Save this article

Response characteristics and preventions for seismic subsidence of loess in Northwest China

Author

Listed:
  • Junling Qiu

    (Chang’an University)

  • Xiuling Wang

    (Chang’an University)

  • Jinxing Lai

    (Chang’an University)

  • Qian Zhang

    (Shijiazhuang Tiedao University)

  • Junbao Wang

    (Xi’an University of Architecture and Technology)

Abstract

Seismic subsidence of loess had been verified by microstructure characteristic, dynamic triaxial test and in situ simulation test using blasting vibration. It has gradually become a significant subject in the field of geotechnical earthquake engineering. Loess is widely distributed in China, which typically has a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or subsidence upon ground motion. Seismic subsidence contributes to various problems to infrastructures that are constructed on loess. This paper provides a review of state-of-the-art work on mechanism, microstructure characteristic and physical mechanics mechanism of the seismic subsidence. Furthermore, the comprehensive explanation, basics and earlier research performed on subsidence amount estimation, seismic subsidence assessment and corresponding preventions of disasters have been presented briefly. The literature review shows that some significant problems, for example, appropriate theoretical basis, multi-variable coupling in assessment, physical processes, mechanical mechanism in estimation, and so on require constant research and development work to overcome the aforementioned factors. Specifically, research on quantitative relation between macro-mechanics and microstructure cannot proceed only from experimental parameters but should establish theoretical connection between them. Further study on seismic subsidence must be developed under the theory of unsaturated soil mechanics. In addition, research on chronological and spatial development law of large-scale seismic subsidence, prediction of subsidence value and anti-seismic analysis of underground structures can be conducted in future.

Suggested Citation

  • Junling Qiu & Xiuling Wang & Jinxing Lai & Qian Zhang & Junbao Wang, 2018. "Response characteristics and preventions for seismic subsidence of loess in Northwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1909-1935, July.
  • Handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3272-5
    DOI: 10.1007/s11069-018-3272-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3272-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3272-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Selcuk Kacin & Murat Ozturk & Umur Korkut Sevim & Bayram Ali Mert & Zafer Ozer & Oguzhan Akgol & Emin Unal & Muharrem Karaaslan, 2021. "Seismic metamaterials for low-frequency mechanical wave attenuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 213-229, May.
    2. Fengyun Liu & Zhushan Shao & Rujia Qiao & Shuocheng Zhang & Wen-Chieh Cheng, 2020. "The influence of compaction energy on frost-heave characteristics of coarse-grained soil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 897-908, January.
    3. Zhilu Chang & Huanxiang Gao & Faming Huang & Jiawu Chen & Jinsong Huang & Zizheng Guo, 2020. "Study on the creep behaviours and the improved Burgers model of a loess landslide considering matric suction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1479-1497, August.
    4. B. Zhao & Y. Q. Zhao, 2020. "Investigation and analysis of the Xiangning landslide in Shanxi Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3837-3845, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3272-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.