IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v92y2018i1d10.1007_s11069-018-3206-2.html
   My bibliography  Save this article

Multi-sensor DInSAR applied to the spatiotemporal evolution analysis of ground surface deformation in Cerro Prieto basin, Baja California, Mexico, for the 1993–2014 period

Author

Listed:
  • Olga Sarychikhina

    (CICESE)

  • Ewa Glowacka

    (CICESE)

  • Braulio Robles

    (Instituto Mexicano de Tecnología del Agua (IMTA))

Abstract

The combined effects of active tectonics and anthropogenic activities, primarily geothermal resources exploitation for electricity production in Cerro Prieto geothermal field, influence the ground surface deformation in Cerro Prieto basin, Baja California, Mexico. In this study, a large set of multi-sensor C-band SAR images have been employed to reconstruct the spatiotemporal evolution of aseismic ground surface deformation that has affected Cerro Prieto basin from 1993 to 2014. Conventional DInSAR together with the interferograms stacking procedure was applied. The results showed that the study area presented considerable surface deformation (mainly subsidence) during the entire time of the investigation. The main changes in rate and pattern of surface deformation have a good correlation in time and space with the changes in production in the Cerro Prieto geothermal field. Comparison of LOS displacement maps from different viewing geometries, and decomposition (where possible) of LOS displacement into vertical and horizontal (east–west) components, revealed considerable horizontal displacement which mostly reflects the ground movement at and beyond the margin of the subsidence basin toward the areas of highest subsidence rates. In addition, the validation of the DInSAR results by comparing them against measurements from leveling surveys was performed, confirming the high reliably of satellite interferometry for the ground surface deformation rate mapping in the study area.

Suggested Citation

  • Olga Sarychikhina & Ewa Glowacka & Braulio Robles, 2018. "Multi-sensor DInSAR applied to the spatiotemporal evolution analysis of ground surface deformation in Cerro Prieto basin, Baja California, Mexico, for the 1993–2014 period," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 225-255, May.
  • Handle: RePEc:spr:nathaz:v:92:y:2018:i:1:d:10.1007_s11069-018-3206-2
    DOI: 10.1007/s11069-018-3206-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3206-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3206-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuri Fialko, 2006. "Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system," Nature, Nature, vol. 441(7096), pages 968-971, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O. Markogiannaki & A. Karavias & D. Bafi & D. Angelou & I. Parcharidis, 2020. "A geospatial intelligence application to support post-disaster inspections based on local exposure information and on co-seismic DInSAR results: the case of the Durres (Albania) earthquake on November," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3085-3100, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuming Wu & Hengxing Lan, 2022. "Study on the Deformation of Filling Bodies in a Loess Mountainous Area Based on InSAR and Monitoring Equipment," Land, MDPI, vol. 11(8), pages 1-17, August.
    2. Bertrand Rouet-Leduc & Romain Jolivet & Manon Dalaison & Paul A. Johnson & Claudia Hulbert, 2021. "Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Társilo Girona & Kyriaki Drymoni, 2024. "Abnormal low-magnitude seismicity preceding large-magnitude earthquakes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Mariani, M.C. & Bezdek, P. & Serpa, L. & Florescu, I., 2011. "Ising type models applied to Geophysics and high frequency market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4396-4402.
    5. Priyom Roy & Tapas R. Martha & K. Vinod Kumar & Prakash Chauhan, 2023. "Coseismic deformation and source characterisation of the 21 June 2022 Afghanistan earthquake using dual-pass DInSAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 843-857, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:92:y:2018:i:1:d:10.1007_s11069-018-3206-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.