IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v90y2018i1d10.1007_s11069-017-3031-z.html
   My bibliography  Save this article

Energy production, economic growth and CO2 emission: evidence from Pakistan

Author

Listed:
  • Danish

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Bin Zhang

    (Beijing Institute of Technology
    Beijing Institute of Technology
    Collaborative Innovation Center of Electric Vehicles in Beijing
    Beijing Key Lab of Energy Economics and Environmental Management)

  • Zhaohua Wang

    (Beijing Institute of Technology
    Beijing Institute of Technology
    Collaborative Innovation Center of Electric Vehicles in Beijing
    Beijing Key Lab of Energy Economics and Environmental Management)

  • Bo Wang

    (Beijing Institute of Technology
    Beijing Institute of Technology)

Abstract

An extensive body of knowledge is available on the relationship between energy consumption and CO2 emission incorporated by different variables. However, the role of energy production in the pollution equation is largely unknown. The present work quantifies the relationship between energy production, economic growth and CO2 emission. A family of econometric tools is used to achieve the objective of the study. Due to the sensitivity of objective of the present work, we use structural break unit root test to measure the stability of parameters within the time span of 1970–2011. Johansen cointegration test confirms the existence of cointegration among variables. Autoregressive distributive lag model reveals that energy production from the fossil fuel is the main culprit behind growing CO2 emission. Additionally, the finding of the study claims the existence of environmental Kuznets curve hypothesis in the significance of energy production in Pakistan. Moreover, bidirectional causality is detected between energy production and carbon dioxide emission in the long-run path. It is suggested that pollution can be condensed by producing energy from the renewable source (hydropower, solar power, geothermal and wind energy) and add more renewable energy to the energy mix.

Suggested Citation

  • Danish & Bin Zhang & Zhaohua Wang & Bo Wang, 2018. "Energy production, economic growth and CO2 emission: evidence from Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 27-50, January.
  • Handle: RePEc:spr:nathaz:v:90:y:2018:i:1:d:10.1007_s11069-017-3031-z
    DOI: 10.1007/s11069-017-3031-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-3031-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-3031-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Ching-Chih, 2010. "A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China," Applied Energy, Elsevier, vol. 87(11), pages 3533-3537, November.
    2. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 173-185.
    3. Baek, Jungho, 2015. "Environmental Kuznets curve for CO2 emissions: The case of Arctic countries," Energy Economics, Elsevier, vol. 50(C), pages 13-17.
    4. Halicioglu, Ferda, 2009. "An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey," Energy Policy, Elsevier, vol. 37(3), pages 1156-1164, March.
    5. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    6. Al-mulali, Usama & Binti Che Sab, Che Normee, 2012. "The impact of energy consumption and CO2 emission on the economic growth and financial development in the Sub Saharan African countries," Energy, Elsevier, vol. 39(1), pages 180-186.
    7. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    8. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.
    9. Ozturk, Ilhan & Acaravci, Ali, 2010. "The causal relationship between energy consumption and GDP in Albania, Bulgaria, Hungary and Romania: Evidence from ARDL bound testing approach," Applied Energy, Elsevier, vol. 87(6), pages 1938-1943, June.
    10. Baek, Jungho & Cho, Yongsung & Koo, Won W., 2009. "The environmental consequences of globalization: A country-specific time-series analysis," Ecological Economics, Elsevier, vol. 68(8-9), pages 2255-2264, June.
    11. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    12. Sharif Hossain, Md., 2011. "Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries," Energy Policy, Elsevier, vol. 39(11), pages 6991-6999.
    13. repec:kap:iaecre:v:16:y:2010:i:4:p:410-418 is not listed on IDEAS
    14. Sheikh, Munawar A., 2010. "Energy and renewable energy scenario of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 354-363, January.
    15. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    16. Jammazi, Rania & Aloui, Chaker, 2015. "On the interplay between energy consumption, economic growth and CO2 emission nexus in the GCC countries: A comparative analysis through wavelet approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1737-1751.
    17. Sheng, Pengfei & Guo, Xiaohui, 2016. "The Long-run and Short-run Impacts of Urbanization on Carbon Dioxide Emissions," Economic Modelling, Elsevier, vol. 53(C), pages 208-215.
    18. Managi, Shunsuke & Hibiki, Akira & Tsurumi, Tetsuya, 2009. "Does trade openness improve environmental quality?," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 346-363, November.
    19. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    20. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    21. Le, Thai-Ha & Chang, Youngho & Park, Donghyun, 2016. "Trade openness and environmental quality: International evidence," Energy Policy, Elsevier, vol. 92(C), pages 45-55.
    22. Yunfeng, Yan & Laike, Yang, 2010. "China's foreign trade and climate change: A case study of CO2 emissions," Energy Policy, Elsevier, vol. 38(1), pages 350-356, January.
    23. Cerdeira Bento, João Paulo & Moutinho, Victor, 2016. "CO2 emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 142-155.
    24. Zhang, Ming & Liu, Xiao & Wang, Wenwen & Zhou, Min, 2013. "Decomposition analysis of CO2 emissions from electricity generation in China," Energy Policy, Elsevier, vol. 52(C), pages 159-165.
    25. Paresh Kumar Narayan, 2005. "The saving and investment nexus for China: evidence from cointegration tests," Applied Economics, Taylor & Francis Journals, vol. 37(17), pages 1979-1990.
    26. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    27. Wolde-Rufael, Yemane & Menyah, Kojo, 2010. "Nuclear energy consumption and economic growth in nine developed countries," Energy Economics, Elsevier, vol. 32(3), pages 550-556, May.
    28. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    29. Shahbaz, Muhammad & Khraief, Naceur & Uddin, Gazi Salah & Ozturk, Ilhan, 2014. "Environmental Kuznets curve in an open economy: A bounds testing and causality analysis for Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 325-336.
    30. Jayanthakumaran, Kankesu & Verma, Reetu & Liu, Ying, 2012. "CO2 emissions, energy consumption, trade and income: A comparative analysis of China and India," Energy Policy, Elsevier, vol. 42(C), pages 450-460.
    31. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    32. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M. & Sab, Che Normee Binti Che, 2013. "Exploring the relationship between urbanization, energy consumption, and CO2 emission in MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 107-112.
    33. MacKinnon, James G & Haug, Alfred A & Michelis, Leo, 1999. "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 563-577, Sept.-Oct.
    34. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    35. Zhang, Chuanguo & Lin, Yan, 2012. "Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China," Energy Policy, Elsevier, vol. 49(C), pages 488-498.
    36. Al Mamun, Md. & Sohag, Kazi & Hannan Mia, Md. Abdul & Salah Uddin, Gazi & Ozturk, Ilhan, 2014. "Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1-11.
    37. Ahmad, Najid & Du, Liangsheng, 2017. "Effects of energy production and CO2 emissions on economic growth in Iran: ARDL approach," Energy, Elsevier, vol. 123(C), pages 521-537.
    38. Yue-Jun Zhang & Xiao-Juan Bian & Weiping Tan, 2018. "The linkages of sectoral carbon dioxide emission caused by household consumption in China: evidence from the hypothetical extraction method," Empirical Economics, Springer, vol. 54(4), pages 1743-1775, June.
    39. Sadorsky, Perry, 2014. "The effect of urbanization on CO2 emissions in emerging economies," Energy Economics, Elsevier, vol. 41(C), pages 147-153.
    40. Ren, Shenggang & Yuan, Baolong & Ma, Xie & Chen, Xiaohong, 2014. "International trade, FDI (foreign direct investment) and embodied CO2 emissions: A case study of Chinas industrial sectors," China Economic Review, Elsevier, vol. 28(C), pages 123-134.
    41. Nasir, Muhammad & Ur Rehman, Faiz, 2011. "Environmental Kuznets Curve for carbon emissions in Pakistan: An empirical investigation," Energy Policy, Elsevier, vol. 39(3), pages 1857-1864, March.
    42. Shahbaz, muhammad & Solarin, Sakiru Adebola & Sbia, Rashid & Bibi, Sadia, 2015. "Does Energy Intensity Contribute to CO2 Emissions? A Trivariate Analysis in Selected African Countries," MPRA Paper 64335, University Library of Munich, Germany, revised 19 Mar 2015.
    43. Shahbaz, Muhammad & Lean, Hooi Hooi & Shabbir, Muhammad Shahbaz, 2012. "Environmental Kuznets Curve hypothesis in Pakistan: Cointegration and Granger causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2947-2953.
    44. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    45. Kivyiro, Pendo & Arminen, Heli, 2014. "Carbon dioxide emissions, energy consumption, economic growth, and foreign direct investment: Causality analysis for Sub-Saharan Africa," Energy, Elsevier, vol. 74(C), pages 595-606.
    46. Begum, Rawshan Ara & Sohag, Kazi & Abdullah, Sharifah Mastura Syed & Jaafar, Mokhtar, 2015. "CO2 emissions, energy consumption, economic and population growth in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 594-601.
    47. Apergis, Nicholas, 2016. "Environmental Kuznets curves: New evidence on both panel and country-level CO2 emissions," Energy Economics, Elsevier, vol. 54(C), pages 263-271.
    48. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    49. Mirza, Faisal Mehmood & Kanwal, Afra, 2017. "Energy consumption, carbon emissions and economic growth in Pakistan: Dynamic causality analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1233-1240.
    50. Menegaki, Angeliki N. & Tsagarakis, Konstantinos P., 2015. "Rich enough to go renewable, but too early to leave fossil energy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1465-1477.
    51. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    2. Hanen Ragoubi & Zouheir Mighri, 2021. "Spillover effects of trade openness on CO2 emissions in middle‐income countries: A spatial panel data approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 835-877, June.
    3. Rauf, Abdul & Zhang, Jin & Li, Jinkai & Amin, Waqas, 2018. "Structural changes, energy consumption and carbon emissions in China: Empirical evidence from ARDL bound testing model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 194-206.
    4. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    5. Danish, & Wang, Bo & Wang, Zhaohua, 2018. "Imported technology and CO2 emission in China: Collecting evidence through bound testing and VECM approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4204-4214.
    6. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    7. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    8. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    9. Hussain Ali Bekhet & Nor Salwati Othman & Tahira Yasmin, 2020. "Interaction Between Environmental Kuznet Curve and Urban Environment Transition Hypotheses in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 384-402.
    10. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    11. Liobikienė, Genovaitė & Butkus, Mindaugas, 2019. "Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions," Renewable Energy, Elsevier, vol. 132(C), pages 1310-1322.
    12. Usama Al-Mulali & Sakiru Adebola Solarin & Ilhan Ozturk, 2016. "Investigating the presence of the environmental Kuznets curve (EKC) hypothesis in Kenya: an autoregressive distributed lag (ARDL) approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1729-1747, February.
    13. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    14. Shahzad, Syed Jawad Hussain & Kumar, Ronald Ravinesh & Zakaria, Muhammad & Hurr, Maryam, 2017. "Carbon emission, energy consumption, trade openness and financial development in Pakistan: A revisit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 185-192.
    15. Mumin Atalay Cetin & Ibrahim Bakirtas, 2020. "The long-run environmental impacts of economic growth, financial development, and energy consumption: Evidence from emerging markets," Energy & Environment, , vol. 31(4), pages 634-655, June.
    16. Abdul Rahim Ridzuan & Aliashim Albani & Abdul Rais Abdul Latiff & Mohamad Idham Md Razak & Mohd Haziq Murshidi, 2020. "The Impact of Energy Consumption based on Fossil Fuel and Hydroelectricity Generation towards Pollution in Malaysia, Indonesia and Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 215-227.
    17. Dogan, Eyup & Seker, Fahri, 2016. "The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1074-1085.
    18. Hongzhong Fan & Md Ismail Hossain, 2018. "Technological Innovation, Trade Openness, CO2 Emission and Economic Growth: Comparative Analysis between China and India," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 240-257.
    19. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    20. Xiangrong Ma & Jianping Ge & Wei Wang, 2017. "The relationship between urbanization, income growth and carbon dioxide emissions and the policy implications for China: a cointegrated vector error correction (VEC) analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1017-1033, June.

    More about this item

    Keywords

    CO2 emission; Energy production; Structural break; EKC; Pakistan;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:90:y:2018:i:1:d:10.1007_s11069-017-3031-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.