IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v88y2017i3d10.1007_s11069-017-2943-y.html
   My bibliography  Save this article

Types and characteristics of slow-moving slope geo-hazards recognized by TS-InSAR along Xianshuihe active fault in the eastern Tibet Plateau

Author

Listed:
  • Xin Yao

    (Chinese Academy of Geological Sciences
    Ministry of Land and Resource)

  • Lingjing Li

    (Chinese Academy of Geological Sciences
    Ministry of Land and Resource)

  • Yongshuang Zhang

    (Chinese Academy of Geological Sciences
    Ministry of Land and Resource)

  • Zhenkai Zhou

    (Chinese Academy of Geological Sciences
    Ministry of Land and Resource)

  • Xinghong Liu

    (Chinese Academy of Geological Sciences
    Ministry of Land and Resource)

Abstract

Displacement for a long time is an important clue to recognize slow-moving slope geo-hazards (SMSGH). And active fault zones in Tibet Plateau are usually the regions developing serious SMSGHs because of rugged terrain, strong tectonic movement, frequent earthquakes and cracked rock masses, etc. Taking the persistent active Xianshuihe Fault (XSF) zone in the eastern Tibet Plateau as study area, this paper carries out time series InSAR observation using 18 periods of L-band ALOS/PALSAR datasets acquired from December, 2006 to September, 2010, gain millimetric-scale ground velocity. Furthermore, combining InSAR velocity with works of field investigation, optical remote sensing interpretation and geological setting analysis, we recognize 394 SMSGHs and gain some understanding of SMSGHs in types, deformation and spatial distribution. Firstly, creep landslide, debris flow and slow-moving moraine are three main types of SMSGH. Secondly, most paleo-landslides, co-seismic landslides and cracked unstable slopes distribute alone the northern section of XSF, and the majority of landslides intersecting with XSF is obviously movable and others are stable or of smaller movement. Thirdly, in the areas of debris flow source, the slow and disperse deformation commonly develop, which can be taken as the clue to identify debris flow; and two types of debris flow sources, “earth-forest” and “loose deposition,” are found. Finally, moraine in hanging glacier valley above 4200 m a.s.l. exists extensively, with huge body and fast dislocation, which is the majority surface erosion type nowadays in this uplifting plateau. The study results also indicate that the combination of InSAR displacement and geological setting analysis can recognize SMSGHs efficiently and effectively, being suitable for mountainous and inaccessible area as this study.

Suggested Citation

  • Xin Yao & Lingjing Li & Yongshuang Zhang & Zhenkai Zhou & Xinghong Liu, 2017. "Types and characteristics of slow-moving slope geo-hazards recognized by TS-InSAR along Xianshuihe active fault in the eastern Tibet Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1727-1740, September.
  • Handle: RePEc:spr:nathaz:v:88:y:2017:i:3:d:10.1007_s11069-017-2943-y
    DOI: 10.1007/s11069-017-2943-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2943-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2943-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifei Zhu & Xin Yao & Leihua Yao & Chuangchuang Yao, 2022. "Detection and characterization of active landslides with multisource SAR data and remote sensing in western Guizhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 973-994, March.
    2. Lingjing Li & Xin Yao & Jiaming Yao & Zhenkai Zhou & Xin Feng & Xinghong Liu, 2019. "Analysis of deformation characteristics for a reservoir landslide before and after impoundment by multiple D-InSAR observations at Jinshajiang River, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 719-733, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:88:y:2017:i:3:d:10.1007_s11069-017-2943-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.