IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i2d10.1007_s11069-017-2783-9.html
   My bibliography  Save this article

Storm climate on the Danube delta coast: evidence of recent storminess change and links with large-scale teleconnection patterns

Author

Listed:
  • Florin I. Zăinescu

    (University of Bucharest)

  • Florin Tătui

    (University of Bucharest)

  • Nikolay N. Valchev

    (Bulgarian Academy of Sciences)

  • Alfred Vespremeanu-Stroe

    (University of Bucharest)

Abstract

This paper presents an overview of storminess along the Danube delta coast since 1949 by analysing wind and wave data and discusses the influences of teleconnections on climate variability. To this end, a five-category storm classification is proposed based on wind speed intensity and storm duration. On average, this coast experiences 30 storms/year occurring predominantly in winter, three of them considered severe (categories III–IV). The extreme storms (cat. V) endanger most the coastal settlements and the back-beach ecosystems (sand dunes, wetlands, lagoons) and have a mean recurrence rate of 7 years, but occur with a large inter-annual variability more frequent during the late 1960s, the 1970s and the 1990s. The prevalence of northern storms, in particular for the severe ones (>90% frequency for wind speeds >20 m/s) is responsible for the vigorous southward longshore sediment transport, which shaped the Danube delta physiognomy over the last millennia. The application of the newly developed energetic (Storm Severity Index—SSI) and morphologic (Storm Impact Potential—SIP) proxies allowed the better assessment of both the storm strength and the temporal variation in storm energy. It appears that storm climate follows a cyclic pattern with successive periods of 7–9 years of high, moderate and low storminess in accordance with the main teleconnections patterns (North Atlantic Oscillation—NAO, East Atlantic oscillation—EA, East Atlantic/Western Russia—EAWR, Scandinavian oscillation—SCAND). If NAO succeeded to explain best most of the storminess evolution (r = −0.76 for 1962–2005), it failed during the latest decade (since 2006) when an unprecedented low in storminess occurred. There is also evidence of increased southern circulation during the latter period, associated with a reversal of correlation with NAO (from negative to positive). Significant correlations were also found for the EA, EAWR and SCAND (r = −0.55, 0.56, 0.55, respectively, significant at p

Suggested Citation

  • Florin I. Zăinescu & Florin Tătui & Nikolay N. Valchev & Alfred Vespremeanu-Stroe, 2017. "Storm climate on the Danube delta coast: evidence of recent storminess change and links with large-scale teleconnection patterns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 599-621, June.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2783-9
    DOI: 10.1007/s11069-017-2783-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2783-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2783-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marius-Victor Birsan & Alexandru Dumitrescu & Dana Micu & Sorin Cheval, 2014. "Changes in annual temperature extremes in the Carpathians since AD 1961," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1899-1910, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yana Saprykina & Sergey Kuznetsov, 2018. "Analysis of the Variability of Wave Energy Due to Climate Changes on the Example of the Black Sea," Energies, MDPI, vol. 11(8), pages 1-15, August.
    2. Veronika N. Maslova & Elena N. Voskresenskaya & Andrey S. Lubkov & Aleksandr V. Yurovsky & Viktor Y. Zhuravskiy & Vladislav P. Evstigneev, 2020. "Intense Cyclones in the Black Sea Region: Change, Variability, Predictability and Manifestations in the Storm Activity," Sustainability, MDPI, vol. 12(11), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiwen Wang & Wen Zhou & Edward Yan Yung Ng & Yong Xu, 2016. "Urban heat islands in Hong Kong: statistical modeling and trend detection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 885-907, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2783-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.