IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v85y2017i3d10.1007_s11069-016-2661-x.html
   My bibliography  Save this article

Tsunami simulation due to seaquake at Manila Trench and Sulu Trench

Author

Listed:
  • N. H. Mardi

    (Universiti Tenaga Nasional)

  • M. A. Malek

    (Universiti Tenaga Nasional)

  • M. S. Liew

    (Universiti Teknologi Petronas)

Abstract

Seaquake is a phenomenon where there are water disturbance at the sea, caused by earthquake or submarine eruption. The scope of this study focuses on tsunami simulation due to Manila Trench and Sulu Trench seaquake which is prone to harm Malaysia offshore areas. Manila Trench is a highly potential earthquake source that can generate tsunami in South China Sea. Meanwhile, Sulu Trench could be a threat to east of Sabah offshore areas. In this study, TUNA-M2 model was utilized to perform tsunami simulation at South China Sea and Sulu Sea. TUNA-M2 model applied Okada source model to create tsunami generation due to earthquake. It utilized linear shallow water equation during tsunami propagation with its radiant boundary condition. Five simulations performed at each study region. Forecast points at South China Sea areas were divided into three separate locations which are at the Peninsular Malaysia, west of Sabah and Sarawak offshore areas. Forecast points at Sulu Sea were focused at the east of Sabah offshore areas. This paper will present the simulation results of tsunami wave height and arrival time at various forecast points. The findings of this study show that the range of tsunami wave height at Sulu Sea is higher than that of South China Sea. The tsunami arrival time at Sulu Sea is less than South China Sea. It can be concluded that Sulu Sea poses worse tsunami threat than South China Sea to the Malaysian offshore areas.

Suggested Citation

  • N. H. Mardi & M. A. Malek & M. S. Liew, 2017. "Tsunami simulation due to seaquake at Manila Trench and Sulu Trench," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1723-1741, February.
  • Handle: RePEc:spr:nathaz:v:85:y:2017:i:3:d:10.1007_s11069-016-2661-x
    DOI: 10.1007/s11069-016-2661-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2661-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2661-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiguo Xu & Shanshan Liang & Mohd Nashriq Bin Abd Rahman & Hongwei Li & Jianyu Shi, 2021. "Historical earthquakes, tsunamis and real-time earthquake monitoring for tsunami advisory in the South China Sea region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 771-793, May.

    More about this item

    Keywords

    Tsunami; TUNA-M2; Malaysia; Manila Trench; Sulu Trench; Seaquake;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:85:y:2017:i:3:d:10.1007_s11069-016-2661-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.