IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i3d10.1007_s11069-016-2512-9.html
   My bibliography  Save this article

A protective seam with nearly whole rock mining technology for controlling coal and gas outburst hazards: a case study

Author

Listed:
  • Qiang Sun

    (China University of Mining and Technology (CUMT))

  • Jixiong Zhang

    (China University of Mining and Technology (CUMT)
    State Key Laboratory of Coal Resources and Safe Mining (CUMT))

  • Qiang Zhang

    (China University of Mining and Technology (CUMT))

  • Wei Yin

    (China University of Mining and Technology (CUMT))

  • Deon Germain

    (China University of Mining and Technology (CUMT)
    University of Mahajanga)

Abstract

Coal seams with low gas permeability and high gas outburst hazards are becoming more serious as coal mines extend deeper, but there are no appropriate protective coal seams for this kind of coal seam in China. In this paper, mining technology using a protective seam with nearly whole rock (PSNWR) is used to improve gas drainage and ensure safety during production. The characteristics of the distribution and occurrence of PSNWRs and their mechanical properties are analyzed. A theoretical mechanics model and three-dimensional numerical model are established to study the controlling effect of PSNWR mining on pressure-relief gas drainage. In this context, the mining process, system and gas extraction design for PSNWRs are introduced. The results for Pingdingshan No. 12 Coal Mine show that mining with a PSNWR 2.0 m thick can effectively reduce the danger of coal and gas outbursts and improve gas drainage and utilization. The gas drainage rates are >80 %, which significantly increases the social, economic and environmental benefits of Pingdingshan No. 12 Coal Mine.

Suggested Citation

  • Qiang Sun & Jixiong Zhang & Qiang Zhang & Wei Yin & Deon Germain, 2016. "A protective seam with nearly whole rock mining technology for controlling coal and gas outburst hazards: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1793-1806, December.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:3:d:10.1007_s11069-016-2512-9
    DOI: 10.1007/s11069-016-2512-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2512-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2512-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei Yang & Bai-quan Lin & Jiang-tao Xu, 2014. "Gas outburst affected by original rock stress direction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1063-1074, June.
    2. Liang Wang & Yuan-ping Cheng & Chao Xu & Feng-hua An & Kan Jin & Xiao-lei Zhang, 2013. "The controlling effect of thick-hard igneous rock on pressure relief gas drainage and dynamic disasters in outburst coal seams," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1221-1241, March.
    3. Y. Zhang & J. Shao & W. Xu & H. Sun, 2014. "Stability analysis of a large landslide in hydropower engineering," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 527-548, January.
    4. Dingqi Li, 2014. "Mining thin sub-layer as self-protective coal seam to reduce the danger of coal and gas outburst," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 41-52, March.
    5. Dan Ma & Xiexing Miao & Haibo Bai & Jihui Huang & Hai Pu & Yu Wu & Guimin Zhang & Jiawei Li, 2016. "Effect of mining on shear sidewall groundwater inrush hazard caused by seepage instability of the penetrated karst collapse pillar," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 73-93, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng-Jie Fang & Bing Liang & Wei-Ji Sun & Zhan-Shan Shi & Jian-Feng Hao & Bei-Fang Wang & Xiao-Yong Zhang, 2022. "Study on Stress Evolution Law of Overburden under Repeated Mining in Long-Distance Double Upper Protective Layer," Energies, MDPI, vol. 15(12), pages 1-24, June.
    2. Liang Cheng & Zhaolong Ge & Jiufu Chen & Hao Ding & Lishuang Zou & Ke Li, 2018. "A Sequential Approach for Integrated Coal and Gas Mining of Closely-Spaced Outburst Coal Seams: Results from a Case Study Including Mine Safety Improvements and Greenhouse Gas Reductions," Energies, MDPI, vol. 11(11), pages 1-16, November.
    3. Qiang Sun & Jixiong Zhang & Qiang Zhang & Xu Zhao, 2017. "Analysis and Prevention of Geo-Environmental Hazards with High-Intensive Coal Mining: A Case Study in China’s Western Eco-Environment Frangible Area," Energies, MDPI, vol. 10(6), pages 1-15, June.
    4. Dong Guowei & Zou Yinhui, 2017. "A Novel Method for Selecting Protective Seam against Coal and Gas Outburst: A Case Study of Wangjiazhai Coal Mine in China," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    5. Gan, Qingqing & Xu, Jiang & Peng, Shoujian & Yan, Fazhi & Wang, Ruifang & Cai, Guoliang, 2021. "Effect of heating on the molecular carbon structure and the evolution of mechanical properties of briquette coal," Energy, Elsevier, vol. 237(C).
    6. Zhanshan Shi & Donglin Ye & Bing Qin & Jianfeng Hao & Weiji Sun & Shengjie Fang, 2022. "Mining Height Effect and Application of Upper Protected Layer Mining Pressure Relief," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    7. Yanjiang Chai & Linming Dou & Jiang He & Xiaotao Ma & Fangzhou Lu & Hu He, 2024. "Limitations of Upper Protective Layers as Pressure Relief Measures for Extra-Thick Coal Seam Mining: Insights from a Case Study," Energies, MDPI, vol. 17(6), pages 1-21, March.
    8. Rui Gao & Bin Yu & Hongchun Xia & Hongfei Duan, 2017. "Reduction of Stress Acting on a Thick, Deep Coal Seam by Protective-Seam Mining," Energies, MDPI, vol. 10(8), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangtian Wang & Cun Zhang & Ningning Liang, 2017. "Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining," Energies, MDPI, vol. 10(9), pages 1-18, September.
    2. Siddhartha Roy & Devi Prasad Mishra & Ram Madhab Bhattacharjee & Hemant Agrawal, 2022. "Genetic programming for prediction of heat stress hazard in underground coal mine environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2527-2543, December.
    3. Yi Xue & Feng Gao & Xingguang Liu, 2015. "Effect of damage evolution of coal on permeability variation and analysis of gas outburst hazard with coal mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 999-1013, November.
    4. Quangui Li & Baiquan Lin & Cheng Zhai, 2015. "A new technique for preventing and controlling coal and gas outburst hazard with pulse hydraulic fracturing: a case study in Yuwu coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2931-2946, February.
    5. Zhanshan Shi & Donglin Ye & Bing Qin & Jianfeng Hao & Weiji Sun & Shengjie Fang, 2022. "Mining Height Effect and Application of Upper Protected Layer Mining Pressure Relief," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    6. Kong, Shengli & Cheng, Yuanping & Ren, Ting & Liu, Hongyong, 2014. "A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief," Applied Energy, Elsevier, vol. 131(C), pages 67-78.
    7. Xiaohong Niu & Guorui Feng & Qin Liu & Yanna Han & Ruipeng Qian, 2022. "Numerical investigation on mechanism and fluid flow behavior of goaf water inrush: a case study of Dongyu coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1783-1802, September.
    8. Yang Yu & Shen-En Chen & Ka-Zhong Deng & Peng Wang & Hong-Dong Fan, 2018. "Subsidence Mechanism and Stability Assessment Methods for Partial Extraction Mines for Sustainable Development of Mining Cities—A Review," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    9. Shuokang Wang & Liqiang Ma, 2019. "Characteristics and Control of Mining Induced Fractures above Longwall Mines Using Backfilling," Energies, MDPI, vol. 12(23), pages 1-24, December.
    10. Rui Gao & Bin Yu & Hongchun Xia & Hongfei Duan, 2017. "Reduction of Stress Acting on a Thick, Deep Coal Seam by Protective-Seam Mining," Energies, MDPI, vol. 10(8), pages 1-15, August.
    11. Jilin Wang & Ming Li & Shaochun Xu & Zhenghui Qu & Bo Jiang, 2018. "Simulation of Ground Stress Field and Advanced Prediction of Gas Outburst Risks in the Non-Mining Area of Xinjing Mine, China," Energies, MDPI, vol. 11(5), pages 1-16, May.
    12. Nan Zhou & Jixiong Zhang & Hao Yan & Meng Li, 2017. "Deformation Behavior of Hard Roofs in Solid Backfill Coal Mining Using Physical Models," Energies, MDPI, vol. 10(4), pages 1-20, April.
    13. Hao Li & Haibo Bai & Jianjun Wu & Zhanguo Ma & Kai Ma & Guangming Wu & Yabo Du & Shixin He, 2017. "A Cascade Disaster Caused by Geological and Coupled Hydro-Mechanical Factors—Water Inrush Mechanism from Karst Collapse Column under Confining Pressure," Energies, MDPI, vol. 10(12), pages 1-19, November.
    14. Dan Ma & Zilong Zhou & Jiangyu Wu & Qiang Li & Haibo Bai, 2017. "Grain Size Distribution Effect on the Hydraulic Properties of Disintegrated Coal Mixtures," Energies, MDPI, vol. 10(5), pages 1-17, April.
    15. Hanpeng Wang & Bing Zhang & Liang Yuan & Guofeng Yu & Wei Wang, 2018. "Gas Release Characteristics in Coal under Different Stresses and Their Impact on Outbursts," Energies, MDPI, vol. 11(10), pages 1-15, October.
    16. Cheng Zhai & Xianwei Xiang & Jizhao Xu & Shiliang Wu, 2016. "The characteristics and main influencing factors affecting coal and gas outbursts in Chinese Pingdingshan mining region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 507-530, May.
    17. Dong Guowei & Zou Yinhui, 2017. "A Novel Method for Selecting Protective Seam against Coal and Gas Outburst: A Case Study of Wangjiazhai Coal Mine in China," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    18. Yuluan Zhao & Xiubin Li, 2016. "Spatial Correlation between Type of Mountain Area and Land Use Degree in Guizhou Province, China," Sustainability, MDPI, vol. 8(9), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:3:d:10.1007_s11069-016-2512-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.