IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i1d10.1007_s11069-016-2408-8.html
   My bibliography  Save this article

Engineering geological analysis of municipal solid waste landfill stability

Author

Listed:
  • Yu Huang

    (Tongji University
    Tongji University)

  • Guanbo Fan

    (Tongji University)

Abstract

Sanitary landfills are the main disposal method of municipal solid waste (MSW). There are multiple engineering issues in the construction and operation of landfills. Because the engineering properties of MSW are complicated and landfills can easily become unstable under the influence of external factors, landfill stability is the most significant engineering issue in landfill operation. This paper presents a review of engineering geological analyses of municipal solid waste landfill stability. Selected case histories involving instability of landfills are discussed based on published research, and the instabilities and their likely causes are examined. The concept of landfills as geologic bodies is introduced, and the factors that affect landfill stability are discussed, based on the engineering properties of the waste, the structural features of the landfill body, and dynamic engineering and geological process such as earthquakes, rainfall, and human engineering activity. Finally, suggestions for landfill operation based on the reviewed case studies and the analysis are presented and a summary of the factors influencing landfill instability is outlined.

Suggested Citation

  • Yu Huang & Guanbo Fan, 2016. "Engineering geological analysis of municipal solid waste landfill stability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 93-107, October.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:1:d:10.1007_s11069-016-2408-8
    DOI: 10.1007/s11069-016-2408-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2408-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2408-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Huang & Chongqiang Zhu, 2014. "Simulation of flow slides in municipal solid waste dumps using a modified MPS method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 491-508, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chongqiang Zhu & Yu Huang & Liang-tong Zhan, 2018. "SPH-based simulation of flow process of a landslide at Hongao landfill in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1113-1126, September.
    2. Anna Maroušková, 2023. "Food Waste Management via Insect Production in the Perspective of Circular Bioeconomy," Economics Working Papers 2023-02, University of South Bohemia in Ceske Budejovice, Faculty of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhengyang Su & Guizhi Wang & Yakun Wang & Xiang Luo & Hao Zhang, 2022. "Numerical simulation of dynamic catastrophe of slope instability in three Gorges reservoir area based on FEM and SPH method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 709-724, March.
    2. Qinjun Wang & Jingjing Xie & Jingyi Yang & Peng Liu & Dingkun Chang & Wentao Xu, 2022. "A Model between Cohesion and Its Inter-Controlled Factors of Fine-Grained Sediments in Beichuan Debris Flow, Sichuan Province, China," Sustainability, MDPI, vol. 14(19), pages 1-12, October.
    3. Chongqiang Zhu & Yu Huang & Liang-tong Zhan, 2018. "SPH-based simulation of flow process of a landslide at Hongao landfill in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1113-1126, September.
    4. Yu Huang & Chongqiang Zhu, 2015. "Numerical analysis of tsunami–structure interaction using a modified MPS method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2847-2862, February.
    5. Siliang Shen & Zheyu Hu, 2023. "Factors Affecting the Maximum Leachate Head in the Landfill Drainage Layer under Clogging Conditions," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    6. Shiyin Sha & Ashley P. Dyson & Gholamreza Kefayati & Ali Tolooiyan, 2024. "Evaluating the Performance of Protective Barriers against Debris Flows Using Coupled Eulerian Lagrangian and Finite Element Analyses," Sustainability, MDPI, vol. 16(17), pages 1-33, August.
    7. Chongqiang Zhu & Hualin Cheng & Zhiyi Chen & Yu Huang, 2021. "Simulation-based hazard management of a constructed landfill for flow slide scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1867-1878, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:1:d:10.1007_s11069-016-2408-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.