IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v83y2016i2d10.1007_s11069-016-2363-4.html
   My bibliography  Save this article

One-dimensional hydrodynamic modeling of GLOF and impact on hydropower projects in Dhauliganga River using remote sensing and GIS applications

Author

Listed:
  • Praveen K. Thakur

    (ISRO)

  • Suruchi Aggarwal

    (ISRO)

  • S. P. Aggarwal

    (ISRO)

  • S. K. Jain

    (National Istitute of Hydrology)

Abstract

This study presents the one-dimensional hydrodynamic modeling for the Glacier Lake Outburst Flood (GLOF) simulation for the six hydroelectric (HE) power projects in Dhauliganga River of Alaknanda Basin. ArcGIS and HEC-GeoRAS extension is used for the whole river GIS database creation. Elevation values and cross-sections were taken from digital elevation models. The initial flow hydrographs were used as upstream boundary condition in MIKE11. The land use/land cover map and Manning’s N values for roughness were prepared using LANDSAT TM and CARTOSAT-1 and verified by the field observation. Cross-sections were also modified after identifying the actual cross-sections width and depth. Subsequently, simulation has been carried out by using MIKE11 HD model at different sections of the river stretch. Calibration is done for the period of June 1, 2001, to May 31, 2002, and validated for the year of 2005 with about 95 % accuracy of observed data. In this study, results have been carried out by 100-year flood ordinates and considering the redistribution of lateral flow from five catchments of Alaknanda Basin. The GLOF peaks for the breach parameters are 1394.28, 1552.04 and 1898.04 m3/s for breach width 40, 60 and 80 m, respectively, just the downstream of the lake site. It is inferred from the study that the GLOF for 80 m breach width gives the peak flood of 1575 m3/s at the project site 1 for first scenario and 3500 m3/s at the site 6 for second scenario. The maximum simulated water levels and depth for the Central Water Commission gauging site at Joshimath are 1381.49 and 4.329 m, respectively, for 100-year-plus GLOF event. This information is critical for the project design discharge calculations.

Suggested Citation

  • Praveen K. Thakur & Suruchi Aggarwal & S. P. Aggarwal & S. K. Jain, 2016. "One-dimensional hydrodynamic modeling of GLOF and impact on hydropower projects in Dhauliganga River using remote sensing and GIS applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1057-1075, September.
  • Handle: RePEc:spr:nathaz:v:83:y:2016:i:2:d:10.1007_s11069-016-2363-4
    DOI: 10.1007/s11069-016-2363-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2363-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2363-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjay Jain & Anil Lohani & R. Singh & Anju Chaudhary & L. Thakural, 2012. "Glacial lakes and glacial lake outburst flood in a Himalayan basin using remote sensing and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 887-899, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashim Sattar & Ajanta Goswami & Anil V. Kulkarni, 2019. "Application of 1D and 2D hydrodynamic modeling to study glacial lake outburst flood (GLOF) and its impact on a hydropower station in Central Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 535-553, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lalan Kumar Jha & Deepak Khare, 2017. "Detection and delineation of glacial lakes and identification of potentially dangerous lakes of Dhauliganga basin in the Himalaya by remote sensing techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 301-327, January.
    2. Uttam Puri Goswami & Manish Kumar Goyal, 2021. "Assessment of glacial lake development and downstream flood impacts of critical glacial lake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1027-1046, October.
    3. Ashim Sattar & Ajanta Goswami & Anil V. Kulkarni, 2019. "Application of 1D and 2D hydrodynamic modeling to study glacial lake outburst flood (GLOF) and its impact on a hydropower station in Central Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 535-553, June.
    4. Meena Kumari Kolli & Christian Opp & Daniel Karthe & Nallapaneni Manoj Kumar, 2022. "Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India," Sustainability, MDPI, vol. 14(4), pages 1-13, February.

    More about this item

    Keywords

    Hydrodynamic modeling; MIKE11; Glacier lake; GLOF simulation;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:83:y:2016:i:2:d:10.1007_s11069-016-2363-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.