IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v83y2016i1d10.1007_s11069-016-2415-9.html
   My bibliography  Save this article

Shoreline variability of an urban beach fronted by a beachrock reef from video imagery

Author

Listed:
  • A. F. Velegrakis

    (University of the Aegean)

  • V. Trygonis

    (University of the Aegean)

  • A. E. Chatzipavlis

    (University of the Aegean)

  • Th. Karambas

    (Aristotle University of Thessaloniki)

  • M. I. Vousdoukas

    (University of the Aegean
    Climate Risk Management Unit)

  • G. Ghionis

    (National and Kapodistrian University of Athens)

  • I. N. Monioudi

    (University of the Aegean)

  • Th. Hasiotis

    (University of the Aegean)

  • O. Andreadis

    (University of the Aegean)

  • F. Psarros

    (University of the Aegean)

Abstract

This contribution presents the results of a study on the shoreline variability of a natural perched urban beach (Ammoudara, N. Crete, Greece). Shoreline variability was monitored in high spatio-temporal resolution using time series of coastal video images and a novel, fully automated 2-D shoreline detection algorithm. Ten-month video monitoring showed that cross-shore shoreline change was, in some areas, up to 8 m with adjacent sections of the shoreline showing contrasting patterns of beach loss or gain. Variability increased in spring/early summer and stabilized until the end of the summer when partial beach recovery commenced. Correlation of the patterns of beach change with wave forcing (as recorded at an offshore wave buoy) is not straightforward; the only discernible association was that particularly energetic waves from the northern sector can trigger changes in the patterns of shoreline variability and that increased variability might be sustained by increases in offshore wave steepness. It was also found that the fronting beachrock reef exerts significant geological control on beach hydrodynamics. Hydrodynamic modelling and observations during an energetic event showed that the reef can filter wave energy in a highly differential manner, depending on its local architecture. In some areas, the reef allows only low-energy waves to impinge on the shoreline, whereas elsewhere penetration of higher waves is facilitated by the low elevation and limited width of the reef or by the presence of an inlet. Wave/reef interaction can also generate complex circulation patterns, including rip currents that appeared to be also constrained by the reef architecture.

Suggested Citation

  • A. F. Velegrakis & V. Trygonis & A. E. Chatzipavlis & Th. Karambas & M. I. Vousdoukas & G. Ghionis & I. N. Monioudi & Th. Hasiotis & O. Andreadis & F. Psarros, 2016. "Shoreline variability of an urban beach fronted by a beachrock reef from video imagery," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 201-222, October.
  • Handle: RePEc:spr:nathaz:v:83:y:2016:i:1:d:10.1007_s11069-016-2415-9
    DOI: 10.1007/s11069-016-2415-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2415-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2415-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stijn Temmerman & Patrick Meire & Tjeerd J. Bouma & Peter M. J. Herman & Tom Ysebaert & Huib J. De Vriend, 2013. "Ecosystem-based coastal defence in the face of global change," Nature, Nature, vol. 504(7478), pages 79-83, December.
    2. Filippo Ferrario & Michael W. Beck & Curt D. Storlazzi & Fiorenza Micheli & Christine C. Shepard & Laura Airoldi, 2014. "The effectiveness of coral reefs for coastal hazard risk reduction and adaptation," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    2. H. M. Tuihedur Rahman & Kate Sherren & Danika van Proosdij, 2019. "Institutional Innovation for Nature-Based Coastal Adaptation: Lessons from Salt Marsh Restoration in Nova Scotia, Canada," Sustainability, MDPI, vol. 11(23), pages 1-26, November.
    3. Théophile Bongarts Lebbe & Hélène Rey-Valette & Éric Chaumillon & Guigone Camus & Rafael Almar & Anny Cazenave & Joachim Claudet & Nicolas Rocle & Catherine Meur-Ferec & Frédérique Viard & Denis Merci, 2021. "Designing coastal adaptation strategies to tackle sea level rise," Post-Print hal-03412421, HAL.
    4. Lam Thi Mai Huynh & Jie Su & Quanli Wang & Lindsay C. Stringer & Adam D. Switzer & Alexandros Gasparatos, 2024. "Meta-analysis indicates better climate adaptation and mitigation performance of hybrid engineering-natural coastal defence measures," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Strain, E.M.A. & Kompas, T. & Boxshall, A. & Kelvin, J. & Swearer, S. & Morris, R.L., 2022. "Assessing the coastal protection services of natural mangrove forests and artificial rock revetments," Ecosystem Services, Elsevier, vol. 55(C).
    6. Siddharth Narayan & Michael W Beck & Borja G Reguero & Iñigo J Losada & Bregje van Wesenbeeck & Nigel Pontee & James N Sanchirico & Jane Carter Ingram & Glenn-Marie Lange & Kelly A Burks-Copes, 2016. "The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-17, May.
    7. Borja G Reguero & Michael W Beck & David N Bresch & Juliano Calil & Imen Meliane, 2018. "Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-24, April.
    8. Beck, Michael W. & Heck, Nadine & Narayan, Siddharth & Menéndez, Pelayo & Reguero, Borja G. & Bitterwolf, Stephan & Torres-Ortega, Saul & Lange, Glenn-Marie & Pfliegner, Kerstin & Pietsch McNulty, Val, 2022. "Return on investment for mangrove and reef flood protection," Ecosystem Services, Elsevier, vol. 56(C).
    9. Pérez-Maqueo, Octavio & Martínez, M. Luisa & Cóscatl Nahuacatl, Rosendo, 2017. "Is the protection of beach and dune vegetation compatible with tourism?," Tourism Management, Elsevier, vol. 58(C), pages 175-183.
    10. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    11. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    12. Katsuhito Nohara & Masaki Narukawa & Akira Hibiki, 2021. "Using contingent behavior analysis to estimate benefits from coral reefs in Kume Island, Japan: A Poisson-inverse Gaussian approach with on-site correction," TUPD Discussion Papers 1, Graduate School of Economics and Management, Tohoku University.
    13. Brathwaite, Angelique & Pascal, Nicolas & Clua, Eric, 2021. "When are payment for ecosystems services suitable for coral reef derived coastal protection?: A review of scientific requirements," Ecosystem Services, Elsevier, vol. 49(C).
    14. Takahiro Tsuge & Yasushi Shoji & Koichi Kuriyama & Ayumi Onuma, 2022. "Using a Choice Experiment to Understand Preferences for Disaster Risk Reduction with Uncertainty: A Case Study in Japan," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    15. Meixia Zhao & Haiyang Zhang & Yu Zhong & Dapeng Jiang & Guohui Liu & Hongqiang Yan & Hongyu Zhang & Pu Guo & Cuitian Li & Hongqiang Yang & Tegu Chen & Rui Wang, 2019. "The Status of Coral Reefs and Its Importance for Coastal Protection: A Case Study of Northeastern Hainan Island, South China Sea," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    16. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    17. Stanley, Rebecca E. & Bilskie, Matthew V. & Woodson, C. Brock & Byers, James E., 2024. "A model for understanding the effects of flow conditions on oyster reef development and impacts to wave attenuation," Ecological Modelling, Elsevier, vol. 489(C).
    18. Hagedoorn, Liselotte C. & Koetse, Mark J. & van Beukering, Pieter J.H. & Brander, Luke M., 2021. "Reducing the finance gap for nature-based solutions with time contributions," Ecosystem Services, Elsevier, vol. 52(C).
    19. Convertino, Matteo & Annis, Antonio & Nardi, Fernando, 2019. "Information-theoretic Portfolio Decision Model for Optimal Flood Management," Earth Arxiv k5aut, Center for Open Science.
    20. Su-Ping Liu & Bin Shi & Kai Gu & Cheng-Cheng Zhang & Ji-Long Yang & Song Zhang & Peng Yang, 2020. "Land subsidence monitoring in sinking coastal areas using distributed fiber optic sensing: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3043-3061, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:83:y:2016:i:1:d:10.1007_s11069-016-2415-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.