IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v82y2016i1d10.1007_s11069-016-2200-9.html
   My bibliography  Save this article

Modeling sediment concentration and transport induced by storm surge in Hengmen Eastern Access Channel

Author

Listed:
  • Kai Yin

    (Southeast University)

  • Sudong Xu

    (Southeast University)

  • Wenrui Huang

    (Florida State University
    Tongji University)

Abstract

Sediment is an important factor for excavation, dredging and maintenance of Hengmen Eastern Access Channel in Pearl River Estuary. As storm surge is considered as an important role in determining sediment re-suspension and transport, as well as creating landforms in the areas of estuary and coast, along with the storm surge disaster damage in Pearl River Estuary is one of the most serious events in China, reasonable simulation of storm-induced sediment concentration, transport and channel siltation in Hengmen Eastern Access Channel is of much significance. Based on the feasibility condition of less research on numerical simulation of storm-induced sediment concentration and transport, especially channel siltation in the Pearl River Estuary, using a curvilinear grid, a nested and coupled model which combines typhoon model, hydrodynamic model (Delft3D-FLOW), wave model (Delft3D-WAVE) and sediment transport model (Delft3D-SED) was set up for the region of Pearl River Estuary. After a series of model verifications, which showed that this coupled model performed well to reflect the characteristics of the typhoon field, tidal currents, wave height, storm surge, distribution of suspended sediment in the studied region, the model was applied to study the storm-induced sediment concentration and transport in Hengmen Eastern Access Channel. Through simulation of one extra tropical storm surge process with this coupled numerical model, the storm-induced sediment concentration and transport in Hengmen Eastern Access Channel were studied, and the storm-induced erosion and deposition were further discussed. Results showed that the effect of storm surge on sediment concentration, transport and siltation was significant. Under the influence of storm surge, the velocity and bed stress around Hengmen Eastern Access Channel increased significantly, which led the re-suspension and transport of sediment, and thus, the higher sediment concentration and more channel siltation occurred. By running this coupled model, the simulated results can be employed in the optimum decision making of Hengmen Eastern Access Channel Regulation Project.

Suggested Citation

  • Kai Yin & Sudong Xu & Wenrui Huang, 2016. "Modeling sediment concentration and transport induced by storm surge in Hengmen Eastern Access Channel," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 617-642, May.
  • Handle: RePEc:spr:nathaz:v:82:y:2016:i:1:d:10.1007_s11069-016-2200-9
    DOI: 10.1007/s11069-016-2200-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2200-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2200-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xianwu Shi & Shan Liu & Saini Yang & Qinzheng Liu & Jun Tan & Zhixing Guo, 2015. "Spatial–temporal distribution of storm surge damage in the coastal areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 237-247, October.
    2. James Knighton & Luis Bastidas, 2015. "A proposed probabilistic seismic tsunami hazard analysis methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 699-723, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prashanth Reddy Hanmaiahgari & Nooka Raju Gompa & Debasish Pal & Jaan Hui Pu, 2018. "Numerical modeling of the Sakuma Dam reservoir sedimentation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1075-1096, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Song & Zhong-Ren Peng & Liyuan Zhao & Chih-Hung Hsu, 2016. "Developing a theoretical framework for integrated vulnerability of businesses to sea level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1219-1239, November.
    2. Ye Zheng & Yazhou Xie & Xuejiao Long, 2021. "A comprehensive review of Bayesian statistics in natural hazards engineering," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 63-91, August.
    3. Xue Jin & Xiaoxia Shi & Jintian Gao & Tongbin Xu & Kedong Yin, 2018. "Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups," IJERPH, MDPI, vol. 15(4), pages 1-19, March.
    4. Yebao Wang & Jiaqi Liu & Xin Du & Qian Liu & Xin Liu, 2021. "Temporal-spatial characteristics of storm surges and rough seas in coastal areas of Mainland China from 2000 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1273-1285, June.
    5. Wenmin Qin & Aiwen Lin & Jian Fang & Lunche Wang & Man Li, 2017. "Spatial and temporal evolution of community resilience to natural hazards in the coastal areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 331-349, October.
    6. Xilin Zhang & Dongdong Chu & Jicai Zhang, 2021. "Effects of nonlinear terms and topography in a storm surge model along the southeastern coast of China: a case study of Typhoon Chan-hom," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 551-574, May.
    7. O. V. Novikova & A. I. Gorshkov, 2022. "Local tsunamigenic sources in Greece, identified by pattern recognition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1335-1348, September.
    8. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    9. Weichao Yang & De Hu & Xuelian Jiang & Xuebo Dun & Bingtao Hou & Chuanxing Zheng & Caixia Chen & Rong Zhuang, 2022. "Framework for Spatio-Temporal Distribution of Disasters and Influencing Factors: Exploratory Study of Tianjin, China," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    10. Xiaotong Sui & Mingzhao Hu & Haoyun Wang & Lingdi Zhao, 2023. "Improved elasticity estimation model for typhoon storm surge losses in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2363-2381, March.
    11. Xue Jin & U. Rashid Sumaila & Kedong Yin, 2020. "Direct and Indirect Loss Evaluation of Storm Surge Disaster Based on Static and Dynamic Input-Output Models," Sustainability, MDPI, vol. 12(18), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:82:y:2016:i:1:d:10.1007_s11069-016-2200-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.